

- □ Internetworking
- □ IP Address format
- □ IP data forwarding
- □ Fragmentation and reassembly

Ref: Chapters 13, 14, 16, and 17 of Comer's Computer Networks and Internets

IP Address

Computing The Class of an Address

First 4 bits	Index	Class
0000	0	Α
0001	1	А
0010	2	Α
0011	3	А
0100	4	Α
0101	5	А
0110	6	А
0111	7	А
1000	8	В
1001	9	В
1010	10	В
1011	11	В
1100	12	С
1101	13	С
1110	14	D
1111	15	Е

The Ohio State University

Classes and Dotted Decimal Notation

Binary: 1100000 00000101 00110000 00000011
 Hex Colon: C0:05:30:03
 Dotted Decimal: 192.5.48.3

Class	Range
A	0 through 127
В	128 through 191
С	192 through 223
D	224 through 239
E	240 through 255

Division of the Address Space

Class	Bits in	Max # of	Bits in	Max # of Hosts
	Prefix	Nets	Suffix	per Net
А	7	128	24	16,777,216
В	14	16,384	16	65,536
С	21	2,097,152	8	256

□ Not all possible addresses can be used.

The Ohio State University

Fig 14.5

Subnetting

- With classes, the network part is 1-byte, 2-byte, or 3byte long. You need class B address space just for 257 addresses.
- Any number of bits can be treated as one "subnetwork"
- Example: First 23 bits = subnet
 Address: 10010100 10101000 00010000 11110001
 Mask: 11111111 11111111111110 00000000
 .AND. 10010100 10101000 00010000 00000000

Supernetting

- □ Subnetting = subset of a network
- \Box Supernet = superset of networks = Σ Class C addresses
- **Example:**

Class C 1:11010100 10101000 00010000 Class C 2:11010100 10101000 00010001 Supernet: 11010100 10101000 0001000

 \Box First 23 bits = subnet

Address:11010100101010000001000111110001Mask:11111111111111111111100000000.AND.10010100101010000001000000000000

The Ohio State University

Special IP Addresses

- □ All-0 host suffix \Rightarrow Network Address
- All-0s ⇒ This computer
 (In some old networks: 0.0.0.0 = broadcast. Not used.)
- □ All-0s network \Rightarrow This network. E.g., 0.0.0.2 = Host 2 on this network
- □ All-1 host suffix ⇒ All hosts on the destination net (directed broadcast),

All-0 host suffix \Rightarrow Berkeley directed broadcast address

- □ All-1s ⇒ All hosts on this net (limited broadcast)
 ⇒ Subnet number cannot be all 1
- $\Box 127.*.*.* \Rightarrow \text{Looback through IP layer}$

Private Addresses

- Any organization can use these inside their network Can't go on the internet. [RFC 1918]
- □ 10.0.0.0 10.255.255.255 (10/8 prefix)
- □ 172.16.0.0 172.31.255.255 (172.16/12 prefix)
- □ 192.168.0.0 192.168.255.255 (192.168/16 prefix)

Classless Interdomain Routing (CIDR)

- Pronounced "Cider"
- □ Classless ⇒ Forget classes. Use Addresses and prefix lengths [RFC1517-1520]
- All routing table entries have prefix lengths Example: 164.107.61.0/26

IP Features

- Connectionless service
- □ Variable size datagrams
- Best-effort delivery: Delay, out-of-order, corruption, and loss possible. Higher layers should handle these.
- Handles only data forwarding
 Uses routing tables prepared by other protocols, e.g.,
 Open Shortest Path First (OSPF),
 Routing Information Protocol (RIP)
- Provides only "Send" and "Delivery" services Error and control messages generated by Internet Control Message Protocol (ICMP) The Ohio State University

Forwarding an IP Datagram

 \mathbf{R}^2

- Delivers datagrams to destination network (subnet)
- □ Routers maintain a "routing table" of "next hops"
- □ Next Hop field does not appear in the datagram

Table at R2:

Destination Next Hop Net 1 Forward to R1 Net 2 Deliver Direct Net 3 Deliver Direct Net 4 Forward to R3

The Ohio State University

IP Addresses and Routing Table Entries \Box IF ((Mask[i] & Destination Addr) = = Destination[i]) *Forward to* NextHop[i] 30.0.0.7 40.0.0.8 128.1.0.9 40.0.0.7 128.1.0.8 192.4.10.9 **Destination** Mask **Next Hop** 255.0.0.0 40.0.0.7 30.0.0.0 40.0.0.0 255.0.0.0 Deliver direct Deliver direct 128.1.0.0 255.255.0.0 192.4.10.0 255.255.255.0 128.1.0.9 Fig 16.3 Raj Jain The Ohio State University 14-19

Sample Routing Table Router Router 164.107.61.254 164.107.61.210 24.93.104.238 24.93.104.1 164.107.61/24 24.93.104/21 24.93.104/21 24.93.104/21

Network-Address	Netmask	Gateway-Address	Interface	Metric
0.0.0.0	0.0.0.0	24.93.104.1	24.93.107.238	1
24.93.104.0	255.255.248.0	24.93.107.238	24.93.107.238	1
24.93.107.238	255.255.255.255	127.0.0.1	127.0.0.1	1
24.255.255.255	255.255.255.255	24.93.107.238	24.93.107.238	1
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
128.146.0.0	255.255.0.0	164.107.61.254	164.107.61.210	1
164.107.61.0	255.255.255.0	164.107.61.210	164.107.61.210	1
164.107.61.210	255.255.255.255	127.0.0.1	127.0.0.1	1
164.107.255.255	255.255.255.255	164.107.61.210	164.107.61.210	1
224.0.0.0	224.0.0.0	24.93.107.238	24.93.107.238	1
224.0.0.0	224.0.0.0	164.107.61.210	164.107.61.210	1
255.255.255.255	255.255.255.255	164.107.61.210	164.107.61.210	1

The Ohio State University

IP Datagram Format

Vers H. Len Service Type		Total Length			
Identif	ication	Flags	Fragm	nent Offset	
Time to live	Туре	Header Checksum		necksum	
Source IP Address					
	Destination IP Address				
IP Opt	omitted	1)	Padding		
Data					
The Ohio State University Fig 16.4 Raj				Raj Jain	
	14	-21			

IP Header Format

- □ Version (4 bits)
- Internet header length (4 bits): in 32-bit words.
 Min header is 5 words or 20 bytes.
- Type of service (8 bits): Reliability, precedence, delay, and throughput
- Total length (16 bits): header + data in bytes
 Total must be less than 64 kB.
- Identifier (16 bits): Helps uniquely identify the datagram during its life for a given source, destination address

IP Header (Cont)

- Flags (3 bits): More flag used for fragmentation
 No-fragmentation
 Reserved
- □ Fragment offset (13 bits): In units of 8 bytes
- □ Time to live (8 bits): Specified in router hops
- Protocol (8 bits): Next level protocol to receive the data
- Header checksum (16 bits): 1's complement sum of all 16-bit words in the header

IP Header (Cont)

- Source Address (32 bits): Original source.
 Does not change along the path.
- Destination Address (32 bits): Final destination.
 Does not change along the path.
- Options (variable): Security, source route, record route, stream id (used for voice) for reserved resources, timestamp recording
- □ Padding (variable):

Makes header length a multiple of 4

□ Data (variable): Data + header \leq 65,535 bytes

Maximum Transmission Unit

- Each subnet has a maximum frame size Ethernet: 1518 bytes
 FDDI: 4500 bytes
 Token Ring: 2 to 4 kB
- □ Transmission Unit = IP datagram (data + header)
- □ Each subnet has a maximum IP datagram length: MTU

IP Protocol Numbers

Decimal	Key word	Protocol
0		Reserved
1	ICMP	Internet Control Message Protocol
2	IGMP	Internet Group Management
		Protocol
4	ST	Stream Protocol
5	TCP	Transmission Control Protocol
8	EGP	Exterior Gateway Protocol
9	IGP	Interior Gateway Protocol
17	UDP	User Datagram Protocol

14-28

IP Options Coding

				_		
Type	Length	V	Value			
1B	1B		nB			
Flag Copy	Class		Nun	nber		
1b	2b		5	b		
Flag Copy: 0 = Copy the option only into the first fragment of a fragmented datagram 1 = Copy into all fragments						
Class: 0 =U 3=reserved	Jser or cont	rol,	1=Reser	rved, 2=	Diagnosti	cs,

IP Options				
Class	Number	Length	Description	
0	0	0	End of Options	
0	1	0	No Op	
0	2	11	Security	
0	3	Var	Loose Source Routing	
0	7	Var	Record Route	
0	8	4	Stream ID (obsolete)	
0	9	Var	Strict Source Routing	
2	4	Var	Internet Time-Stamp	

IP Source Routing

Timestamp Option

Fragmentation

- Datagrams larger than MTU are fragmented
- Original header is copied to each fragment and then modified (fragment flag, fragment offset, length,...)

Reassembly

- □ Reassambly only at the final destination
- □ Partial datagrams are discarded after a timeout
- Fragments can be further fragmented along the path.
 Subfragments have a format similar to fragments.
 It is not possible to tell how many times fragmented.
- $\Box Minimum MTU along a path \Rightarrow Path MTU$

- IPv4 uses 32-bit addresses organized as network prefix and host suffix.
- □ Four classes of networks: A, B, C, D
- □ Routers determine next hop using routing tables
- □ IP provides connectionless unreliable service