LAN Emulation, IP
Switching
and Label Switching
Raj Jain
Pro: Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u> Raj Jain

- LAN Emulation
- Classical IP over ATM
- □ Next Hop Resolution Protocol (NHRP)
- □ Multiprotocol over ATM (MPOA)
- □ IP Switching (Ipsilon)
- □ Tag Switching (CISCO)
- □ Multi-protocol label switching (MPLS)

IP Forwarding:Fundamentals

To: 164.56.23.34 From: 164.56.43.96

- IP routers forward the packets towards the destination subnet
- On the same subnet, routers are not required.

IP Addresses: 164.56.23.34
 Ethernet Addresses: AA-23-56-34-C4-56
 ATM : 47.0000 <u>1 614 999 2345</u>.00.00.AA....

- □ LAN Emulation driver replaces Ethernet driver and passes the networking layer packets to ATM driver.
- □ Each ATM host is assigned an Ethernet address.
- LAN Emulation Server translates Ethernet addresses to ATM addresses
- □ Hosts set up a VC and exchange packets
- □ All software that runs of Ethernet can run on LANE

- ATM stations are divided in to Logical IP Subnets (LIS)
- ATMARP server translates IP addresses to ATM addresses.
- □ Each LIS has an ATMARP server for resolution
- □ IP stations set up a direct VC with the destination or the router and exchange packets.

IP Multicast over ATM

- Multicast Address Resolution Servers (MARS)
- □ Internet Group Multicast Protocol (IGMP)
- Multicast group members send IGMP join/leave messages to MARS
- Hosts wishing to send a multicast send a resolution request to MARS
- □ MARS returns the list of addresses
- MARS distributes membership update information to all cluster members

Next Hop Resolution Protocol

- \Box Routers assemble packets \Rightarrow Slow
- NHRP servers can provide ATM address for the edge device to any IP host
- Can avoid routers if both source and destination are on the same ATM network.

Multiprotocol Over ATM

- $\square MPOA = LANE + "NHRP+"$
- □ Extension of LANE
- Uses NHRP to find the shortcut to the next hop
- □ No routing (reassembly) in the ATM network

Multiprotocol Over ATM

Next Hop Address Resolution

Multicast Address Resolution Server

Routing

Bridging

LAN Emulation

MPOA (Cont)

- □ LANE operates at layer 2
- □ RFC 1577 operates at layer 3
- MPOA operates at both layer 2 and layer 3
 MPOA can handle non-routable as well as routable protocols
- ❑ Layer 3 protocol runs directly over ATM
 ⇒ Can use ATM QoS
- □ MPOA uses LANE for its layer 2 forwarding

IP Switching

- Developed by Ipsilon
- Routing software in every ATM switch in the network
- Initially, packets are reassembled by the routing software and forwarded to the next hop
- □ Long term flows are transferred to separate VCs. Mapping of VCIs in the switch \Rightarrow No reassembly

IP Switching (Cont)

- □ Flow-oriented traffic: FTP, Telnet, HTTP, Multimedia
- Short-lived Traffic: DNS query, SMTP, NTP, SNMP, request-response Ipsilon claims that 80% of packets and 90% of bytes are flow-oriented.
- IP switching implemented as a s/w layer over an ATM switch
- Ipsilon claims their Generic Switch Management Protocol (GSMP) to be 2000 lines, and Ipsilon Flow Management Protocol (IFMP) to be only 10,000 lines of code

Tag Switching

- □ Proposed by CISCO
- □ Similar to VLAN tags
- □ Tags can be explicit or implicit L2 header

L2 Header Tag

□ Ingress router/host puts a tag. Exit router strips it off.

Tag Switching (Cont)

- □ Switches switch packets based on labels. Do not need to look inside \Rightarrow Fast.
- One memory reference compared to 4-16 in router
- **Tags have local significance**
 - \Rightarrow Different tag at each hop (similar to VC #)

Alphabet Soup

- **CSR Cell Switched Router**
- □ ISR Integrated Switch and Router
- LSR Label Switching Router
- **TSR Tag Switching Router**
- □ Multi layer switches, Swoters
- DirectIP
- □ FastIP
- PowerIP

MPLS

- Multiprotocol Label Switching
- IETF working group to develop switched IP forwarding
- Initially focused on IPv4 and IPv6.
 Technology extendible to other L3 protocols.
- □ Not specific to ATM. ATM or LAN.
- □ Not specific to a routing protocol (OSPF, RIP, ...)
- Optimization only. Labels do not affect the path.
 Only speed. Networks continue to work w/o labels

Label Format

- □ Labels = Explicit or implicit L2 header
- \Box TTL = Time to live
- \Box CoS = Class of service
- □ SI = Stack indicator

Label Stacks

- Labels are pushed/popped as they enter/leave MPLS domain
- Routers in the interior will use Interior Gateway
 Protocol (IGP) labels. Border gateway protocol (BGP) labels outside.

L2 Header Label 1 Label 2

••• Label n

MPLS: Issues

- □ Loop prevention, detection, survival
- □ Multicast:

Multiple entries in label information base

- Multipath: Streams going to the same destination but different sources/port # may be assigned separate labels.
- Host involvement: Label-enabled hosts will avoid first hop reassembly
- Security: Label swapping may be terminated before firewall

- □ LANE allows current applications to run on ATM
- Classical IP allows ARP using ATMARP servers
- □ NHRP removes the need for routing in an ATM net
- MPOA combines LANE and NHRP
- IP Switching: Traffic-based, per-hop VCs, downstream originated
- □ Tag switching: Topology based, one VC per route
- MPLS combines various features of IP switching, CSR, Tag switching, ARIS

Key References

- See <u>http://www.cis.ohio-state.edu/~jain/refs/</u> <u>ipoa_ref.htm</u> and <u>http://www.cis.ohio-</u> <u>state.edu/~jain/refs/</u> <u>ipsw_ref.htm</u>
- "A Framework for Multiprotocol Label Switching", 11/26/1997, <u>http://www.internic.net/internet-</u> <u>drafts/draft-ietf-mpls-framework-02.txt</u>
- Multiprotocol Label Switching (mpls) working group at IETF. Email: <u>mpls-request@cisco.com</u>

References (Cont)

- ATM Forum, "MPOA V1.0," July 1997, <u>ftp://ftp.atmforum.com/pub/approved-specs/af-mpoa-0087.000.doc</u>
- RFC 2332, "NBMA Next Hop Resolution Protocol (NHRP)", <u>ftp://ftp.isi.edu/in-notes/rfc2322.txt</u>, 2/6/98.
- RFC 2225, "Classical IP and ARP over ATM," 1/20/94, <u>ftp://ftp.isi.edu/in-notes/rfc2225.txt</u>
- LAN Emulation over ATM v1.0 Specification (Jan 1995), <u>ftp://ftp.atmforum.com/pub/approved-specs/aflane-0021.000.ps</u>