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1 Introduction

In recent years there has been a tremendous growth in the amount of WWW traffic over the Internet.
WWW traffic is essentially bursty in nature with periods of activity. The traffic pattern generated by a
large number of WWW connections is expected to be different from that generated by persistent TCP
traffic. In this contribution, we study the performance of WWW traffic over long delay networks for the
UBR+ service. In our previous work [GOYAL97a, GOYAL97b, KOTA97], we have assessed the
performance of persistent TCP traffic over UBR+ for various TCP options, UBR+ drop policies, buffer
sizes and link delays. In this contribution, we extend the previous studies to WWW traffic. We also
introduce another TCP model, NewReno [HOE96][FALL96], into our suite of TCP enhancements.

In this study, using our WWW traffic model, we perform full factorial simulations [JAIN91] involving

• TCP flavors: Vanilla, Fast Retransmit Recovery (Reno), NewReno and SACK

• UBR+ drop policies: Early Packet Drop (EPD) and Selective Drop (SD)

• Propagation delays: Satellite (Single-hop GEO, multiple-hop LEO/single-hop MEO) and WAN
delays

• Buffer sizes: We use three buffer sizes approximately corresponding to 0.5, 1, and 2 times the round
trip delay-bandwidth products

The simulation results are analyzed using ANOVA techniques presented in [JAIN91], and briefly
described in Section 8.

Section 2 briefly discusses the key results of our previous work in TCP over UBR+. Section 3 presents an
overview of the TCP enhancements, especially NewReno and SACK. Section 4 briefly overviews two
UBR+ drop policies, EPD and Selective Drop, used in our simulations. We then describe our WWW
model in Section 5. Finally, we present our simulation experiments, techniques, performance metrics,
results and analysis.

2 Previous Work

In our past work, we have studied the performance of TCP over UBR+ and GFR for persistent TCP
traffic. Studies have shown that TCP results in poor performance over UBR. Performance was measured
in terms of efficiency and fairness. TCP performance over UBR can be improved by enhanced end-
system policies as well as switch buffer management policies (or drop policies). The results for persistent
TCP over UBR+ can be summarized as follows [GOYAL97a][GOYAL97b][GOYAL98]:

• TCP performance over UBR can be improved by TCP enhancements, intelligent drop policies,
guaranteed rate and sufficient buffer sizing.

• For low delay networks, intelligent drop policies provide the most improvement in performance.

• For long delay networks, end system policies have a more significant effect than drop policies. TCP
SACK results in the best performance1.

• Providing a guaranteed rate to the UBR service categories significantly improves the performance of
TCP over UBR+ especially for long delay networks.

                                                
1 In our previous work, we did not assess the performance of NewReno by simulation.



3

• For satellite networks with Selective Drop and TCP SACK, a buffer size of 0.5 RTT*bandwidth is
sufficient for high performance even for a large number of TCP sources. Although higher buffer sizes
improve the performance, the improvement is small. Lower buffer sizes decrease the performance
significantly (both efficiency and fairness).

3  TCP Enhancements

TCP uses a window-based flow control and uses it also to limit the number of segments in the network.
"Vanilla TCP" consists of the slow start and congestion avoidance phases for congestion control. It
detects segment losses by the retransmission timeout. Coarse granularity of timeouts are the primary
cause of low TCP throughput over the UBR service. TCP Reno implements the fast retransmit and
recovery algorithms that enable the connection to quickly recover from isolated segment losses
[STEV97]. TCP Reno can efficiently recover from isolated segment losses, but not from bursty losses. As
a result, TCP Reno results in poor efficiency for long latency configurations especially for low buffer
sizes and persistent traffic.

3.1 TCP New Reno: A Modi fication to Fast Retransmit and Recovery

As indicated above, TCP Reno can not recover effectively from multiple packet drops. A modification to
Reno, popularly known as NewReno was proposed by Jenny Hoe [HOE96] to overcome this
shortcoming. She introduced a “fast-retransmit phase'', in which the sender remembers the highest
sequence number sent (RECOVER) when the fast retransmit is first triggered. After the first
unacknowledged packet is retransmitted (when three duplicate ACKs are received), the sender follows the
usual fast recovery algorithm and increases the CWND by one segment for each duplicate ACK it
receives. When the sender receives an acknowledgment for the retransmitted packet, it checks if the ACK
acknowledges all segments including RECOVER. If so, the sender exits the fast retransmit phase, sets its
CWND to SSTHRESH and starts a linear increase (congestion avoidance phase). On the other hand, if the
ACK is a partial ACK, i.e., it acknowledges the retransmitted segment and only some of the segments
before RECOVER, then the sender immediately retransmits the next expected segment as indicated by the
ACK. A partial ACK also resets the CWND to SSTHRESH. This continues until all segments including
RECOVER are acknowledged. The NewReno retransmits one segment every round trip time until an
ACK is received for RECOVER. This mechanism ensures that the sender will recover from N segment
losses in N round trips.

Very recently, a description of the NewReno algorithm has appeared in [FLOY98]. This description
recommends a modification in which on receiving a partial ACK the congestion window is reduced by
amount of new data acknowledged and then incremented by 1 MSS. Another modification is suggested to
avoid multiple fast retransmits. Our implementation of NewReno reflects the behavior as implemented in
version ns-2.1b3 of ns simulator [NS] and does not have these modifications.

Another issue raised in [FLOY98] is whether the retransmit timer should be reset after each partial ACK
or only after the first partial ACK. For satellite links, where retransmission timeout value is not much
larger than the round trip time (RTT), the first option is better. If the retransmit timer is reset only after
the first partial ACK, a retransmission timeout will be caused even for a small number of packets lost in a
window. For satellite links with their long delays, a timeout is very costly. However, for WAN links, the
retransmission timeout value is much larger than the RTT. For WAN links, if there are a number of
packets lost in a window, it is better to timeout and retransmit all the packets using slow-start than to
retransmit just 1 packet every RTT. In such a case, the second option is better. In our implementation, we
reset the retransmit timer after each partial ACK.

Further, in our implementation of NewReno, we have incorporated two changes suggested by [HOE96].
The first suggestion is to set the initial SSTHRESH value to RTT-bandwidth product. The second is to
send one new packet beyond RECOVER upon receiving 2 duplicate ACKs while in the fast-retransmit
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phase (to keep the "flywheel" going). In our implementation, on receiving a partial ACK, a single packet
is retransmitted. Since the TCP delay ACK timer is NOT set, all segments are ACKed as soon as they are
received.

3.2 SACK TCP: Selective A cknowledgements

TCP with Selective Acknowledgments (SACK TCP) has been proposed to efficiently recover from
multiple segment losses [MATH96]. In SACK TCP, acknowledgments contain additional information
about the segments that have been received by the destination. When the destination receives out-of-order
segments, it sends duplicate ACKs (SACKs) acknowledging the out-of-order segments it has received.
From these SACKs, the sending TCP can reconstruct information about the segments not received at the
destination. On receiving three duplicate ACKs, the sender retransmits the first lost segment and enters
"fast-retransmit" phase as in NewReno. The CWND is set to half its current value. SSTHRESH is set to
the new value of CWND and the highest sequence number sent so far is recorded in RECOVER. As in
NewReno, the sender does not come out of the fast-retransmit phase until it has received the ACK for
RECOVER. However, in the fast-retransmit phase if allowed by the window, the sending TCP uses the
SACK information to retransmit lost segments before sending any new data. A sender implementing
NewReno can retransmit only one lost segment every RTT. Thus it recovers from N segment losses in N
RTTs. However, a sender implementing SACK can recover from N segment losses much faster.

Our implementation of SACK is based on the description in [FALL96][FLOY95][MATH96]. The SACK
is sent whenever out-of-sequence data is received. All duplicate ACKs contain the SACK option. The
receiver keeps track of all the out-of-sequence data blocks received.  When the receiver generates a
SACK, the first SACK block specifies the block of data formed by the most recently received data
segment. This ensures that the receiver provides the most up to date information to the sender. After the
first SACK block, the remaining blocks can be filled in any order.

The sender keeps a table of all the segments sent but not ACKed. When a segment is sent, it is entered
into the table.  When the sender receives an ACK with the SACK option, it marks all the segments
specified in the SACK option blocks as SACKed. The entries for each segment remain in the table until
the segment is ACKed. When the sender receives three duplicate ACKs, it retransmits the first
unacknowledged packet and enters fast-retransmit phase. During the fast retransmit phase, when the
sender is allowed to send, it first tries to retransmit the holes in the SACK blocks before sending any new
segments.  When the sender retransmits a segment, it marks the segment as retransmitted in the table. If a
retransmitted segment is lost, the sender times out and performs slow start. When a timeout occurs, the
sender resets the SACK table.

During the fast retransmit phase, the sender maintains a variable called "PIPE" that indicates the number
of bytes currently in the network. When the third duplicate ACK is received, PIPE is set to the value of
CWND - 3 segments and CWND is reduced by half. For every subsequent duplicate ACK received, PIPE
is decremented by one segment because the ACK denotes a packet leaving the network.  The sender sends
data (new or retransmitted) only when PIPE is less than CWND value. This implementation is equivalent
to inflating the CWND by one segment for every duplicate ACK and sending segments if the number of
unacknowledged bytes is less than the congestion window value.

When a segment is sent, PIPE is incremented by one segment. When a partial ACK is received, PIPE is
decremented by two. The first decrement is because the partial ACK represents a retransmitted segment
leaving the pipe.  The second decrement is done because the original segment that was lost, and had not
been accounted for, is now actually considered to be lost.
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4 UBR+ Drop Policies

The basic UBR service can be enhanced by implementing intelligent drop policies at the switches. In this
study, we have used EPD and Selective Drop as drop policies.

4.1 Early Packet Discard (E PD)

The Early Packet Discard policy [ROMA95] maintains a threshold R, in the switch buffer. When the
buffer occupancy exceeds R, then all new incoming packets are dropped. Partially received packets are
accepted if possible.

The drop threshold R should be chosen so that on crossing the threshold, the switch has enough buffer left
to accept cells of all incomplete packets currently in the buffer. However, if the number of VCs passing
through the switch is large, it is possible that the entire buffer may not be enough to store one complete
packet of each VC.

4.2 Selective Drop (SD)

The Selective Drop policy [GOYAL98] uses per-VC accounting, i.e., keeps track of current buffer
utilization of each active UBR VC. A UBR VC is called "active" if it has at least one cell currently
buffered in the switch. The total buffer occupancy, X, is allowed to grow until it reaches a threshold R,
maintained as a fraction of the buffer capacity K. A fair allocation is calculated for each active VC, and if
the VC’s buffer occupancy Xi exceeds its fair allocation, its subsequent incoming packet is dropped.
Mathematically, in the Selective Drop scheme, an active VC’s entire packet is dropped if

(X > R) AND (Xi  > Z  X/Na)

where Na is the number of active VCs and Z is another threshold parameter (0 < Z <= 1) used to scale the
effective drop threshold.

5 WWW Traffic Model

The WWW uses Hypertext Transfer Protocol (HTTP). HTTP uses TCP/IP for communication between
WWW clients and WWW servers [LEE96]. Modeling of the WWW traffic is difficult because of the
changing nature of web traffic. In this section, we outline our model and the inherent assumptions.

5.1 Implications of the HTTP/1.1 standard

The main difference between version 1.1 of the Hypertext Transfer Protocol, HTTP/1.1 [FIEL97], and
earlier versions is the use of persistent TCP connections as the default behavior for all HTTP connections.
In other words, a new TCP connection is not set up for each HTTP/1.1 request. The HTTP client and the
HTTP server assume that the TCP connection is persistent until a Close request is sent in the HTTP
Connection header field.

Another important difference between HTTP/1.1 and earlier versions is that the HTTP client can make
multiple requests without waiting for responses from the server (called pipelining). Earlier models were
closed-loop in the sense that each request needed a response before the next request could be sent.
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5.2 WWW Server Model

Our WWW traffic arrival model is an  extension of that specified in SPECweb96 benchmark [SPEC96].
In our model, a WWW server, on receiving a request from a WWW client sends some data back. The
amount of data to be sent (the requested file size) is determined by classifying the client request into one
of five classes (Class 0 through Class 4), shown in Table 1. As shown in the table, 20% of the requests are
classified as Class 0 requests, i.e., less than 1 KB of data is sent in the response. Similarly 28% of file
requests are classified as Class 1 requests and so on. We model our WWW servers as infinitely fast
servers, i.e., the response is generated as soon as the request is received.

Table 1 WWW Server File Size Classes

Class File Size Range Frequency
Of Access

Class 0 0 - 1 KB 20 %

Class 1 1 KB - 10 KB 28 %

Class 2 10 KB – 100 KB 40 %

Class 3 100 KB - 1 MB 11.2 %

Class 4 1 MB - 10 MB 0.8 %

There are nine discrete sizes in each class (e.g. Class 1 has 1 KB, 2 KB, up to 9 KB and Class 2 has 10
KB, 20 KB, through 90 KB and so on.). Within a class, one of these nine file sizes is selected according
to a Poisson Distribution with mean 5. The model of discrete sizes in each class is based on the
SPECweb96 benchmark [SPEC96]. The key differences from the SPEC model are

(i) the assumptions of an infinite server, i.e. no processing time taken by server for a client request,
and

(ii)  a new class of file sizes (1 MB - 10 MB), which allows us to model file sizes larger than those in
the SPEC benchmark and the corresponding change in the percentage distribution of client
requests into server file size classes.

The reason for the new class of file sizes is to model downloading of large software and offline browsing
of search results. The percentages of requests falling into each of file size classes have been changed so
that average requested file size is around 120 KB, as opposed to 15 KB in SPECweb96 model. We
believe the new figure better represents the current WWW traffic scenario. The reason for having 20% of
the requests classified as Class 0 requests is explained in next sub-section.

5.3 WWW Client Model

The HTTP-model in [MAH97] describes an empirical model of WWW clients based on observations in a
LAN environment. Specifically, a typical client is observed to make, on the average, four HTTP GET
requests for a single document. Multiple requests are needed to fetch inline images, if any. With the
introduction of JAVA scripts in web pages, additional accesses maybe required to fetch the scripts.
Therefore, we use five as the average number of HTTP GET requests. In our model, a WWW client
makes 1 to 9 requests for a single document, The number is Poisson distributed around a mean of 5.
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These requests are separated by a random time interval between 100 ms to 500 ms. Caching effects at the
clients are ignored.

Typically, the first request from an HTTP client accesses the index page (plain text), which is of size 1
KB or less. Since every fifth request is expected to be an index page access, WWW server classifies 20%
(= 1/5) of the client requests as Class 0 requests and sends 1 KB or less data in the response.

We also model a time lag between batches of requests (presumably for the same document), that
corresponds to the time taken by the user to request a new document, as a constant, 10 seconds. While this
may be too short a time for a human user to make decisions, it also weights the possibility of offline
browsing where the inter-batch time is much shorter.

We do not attempt to model user behavior across different servers. The main purpose of using this
simplistic model is to approximate the small loads offered by individual web connections, and to study
the effects of aggregation of such small loads on the network.

6 Simulation Experiments

Figure 1 shows the configuration used in all our simulations. The configuration consists of 100 WWW
clients being served by 100 WWW servers, one server for each client. Both WWW clients and servers use
underlying TCP connections for data transfer. The switches implement the UBR+ service with optional
drop policies described earlier. The following subsections describe various configuration parameters, TCP
parameters, and switch parameters used in the simulations.

6.1 Configuration Paramete rs

• Links connecting server/client TCPs to switches have a bandwidth of 155.52 Mbps (149.76 Mbps
after SONET overhead), and a one way delay of 5 microseconds.

• The link connecting the two switches has a bandwidth of 45Mbps (T3). It simulates one of three
scenarios: a WAN, a multiple hop LEO/single hop MEO or a GEO link. The corresponding one-way
link delays are 5 ms, 100 ms and 275 ms, respectively.

• Since the propagation delays on the links connecting client/server TCPs to switches are negligible
compared to the delay on the inter-switch link, the round trip times (RTTs) due to propagation delay
are 10 ms, 200 ms and 550 ms for WAN, LEO/MEO and GEO, respectively.

Figure 1 Simulation Configuration with 100 WWW Client-Server Connections
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• All simulations run for 100 secs. Since every client makes a new set of requests every 10 secs, the
simulations run for 10 cycles of client requests.

6.2 TCP Parameters

• Underlying TCP connections send data as specified by the client/server applications. A WWW client
asks its TCP to send a 128 byte packet as a request to the WWW server TCP.

• TCP maximum segment size (MSS) is set to 1024 for WAN links and 9180 for LEO/MEO and GEO
links.

• TCP timer granularity is set to 100 ms.

• TCP maximum receiver window size is chosen so that it is always greater than RTT-bandwidth
product of the path. Such a value of receiver window ensures that receiver window does not prevent
sending TCPs from filling up the network pipe. For WAN links (10 ms RTT due to propagation
delay), the default receiver window size of 64K is sufficient. For MEO links (200 ms RTT), RTT-
bandwidth product is 1,125,000 bytes. By using the TCP window scaling option and having a window
scale factor of 5, we achieve an effective receiver window of 2,097,120 bytes. Similarly, for GEO
links (550 ms RTT), the RTT-bandwidth product is 3,093,750 bytes. We use a window scale factor of
6 to achieve an effective receiver window of 4,194,240 bytes.

• TCP "Silly Window Syndrome Avoidance" is disabled because in WWW traffic many small
segments (due to small request sizes, small file sizes or last segment of a file) have to be sent
immediately.

• It has been proposed in [HOE96] that instead of having a fixed initial SSTHRESH of 64 KB, the
RTT-bandwidth product of the path should be used as initial SSTHRESH. In our simulations, we
have implemented this. Hence, the initial SSTHRESH values for WAN, MEO and GEO links are
56,250, 1,125,000 and 3,093,750 bytes respectively.

• The TCP delay ACK timer is NOT set. Segments are ACKed as soon as they are received.

6.3 Switch Parameters

• The drop threshold R is 0.8 for both drop policies - EPD and SD. For SD simulations, threshold Z
also has a value 0.8.

• We use three different values of buffer sizes in our experiments. These buffer sizes approximately
correspond to 0.5, 1, and 2 RTT - bandwidth products. For WAN delays, the largest buffer size is
2300 cells. This is a little more than the 2 RTT - bandwidth product. The reason for selecting 2300 is
that this is the smallest buffer size that can hold one complete packet (MSS=1024 bytes) for each of
the 100 TCP connections. For WAN, 0.5 RTT and 1 RTT buffers are not sufficient to hold one packet
from each of the 100 TCPs. This problem will also occur in MEO and GEO TCPs if the number of
TCPs is increased. Some preliminary analysis has shown that the buffer size required for good
performance may be related to the number of active TCP connections as well as the RTT-bandwidth
product. Further research needs to be performed to provide conclusive results of this effect. Table 2
shows the switch buffer sizes used in the simulations.
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Table 2 Switch Buffer Sizes used for Simulations

Link Type (RTT) RTT-bandwidth
product (cells)

Switch Buffer Sizes
(cells)

WAN (10 ms) 1062 531, 1062, 2300

Multiple-Hop
LEO/Single-Hop
MEO (200 ms)

21230 10615, 21230, 42460

Single-Hop GEO (550
ms)

58380 29190, 58380, 116760

7 Performance Metrics

The performance of TCP is measured by the efficiency and fairness index which are defined as follows.
Let xi be the throughput of the ith TCP connection  (1 ≤ i ≤ 100). Let C be the maximum TCP throughput
achievable on the link. Let E be the efficiency of the network. Then, E is defined as

where N = 100 and ∑xi    is sum of all 100 server throughputs.

The TCP throughput values are measured at the client TCP layers. Throughput is defined as the highest
sequence number in bytes received at the client from the server divided by the total simulation time. The
results are reported in Mbps.

Due to overheads imposed by TCP, IP, LLC and AAL5 layers, the maximum possible TCP over UBR
throughput depends on the TCP maximum segment size (MSS). For MSS = 1024 bytes (on WAN links),
the ATM layer receives 1024 bytes of data + 20 bytes of TCP header + 20 bytes of IP header + 8 bytes of
LLC header + 8 bytes of AAL5 trailer. These are padded to produce 23 ATM cells. Thus, each TCP
segment of 1024 bytes results in 1219 bytes at the ATM layer. Thus, the maximum possible TCP
throughput C is 1024/1219 = 84%. This results in 37.80 Mbps approximately on a 45 Mbps link.
Similarly, for MSS = 9180 bytes (on MEO, GEO links), C is 40.39 Mbps approximately. Since, the “Silly
Window Syndrom Avoidance” is disabled (because of WWW traffic), some of the packets have less than
1 MSS of data. This decreases the value of C a little. However, the resulting decrease in the value of C
has an insignificant effect on the overall efficiency metric.

In all simulations, the 45 Mbps(T3) link between the two switches is the bottleneck. The average total
load generated by 100 WWW servers is 48 Mbps2.

                                                

2 A WWW server gets on average 5 client requests every 10 s and sends on average 120 kB of data for each request. This means
that on average a WWW server schedules 60 kBps i.e. 480 kbps of data. Hence average total load generated by 100 WWW
servers is 48 Mbps.
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We measure fairness by calculating the Fairness Index F defined by:

where N = 100 and ei  is the expected throughput for connection i. In our simulations, ei is the max-min
fair share that should be allocated to server i. On a link with maximum possible throughput C, the fair
share of each of the 100 servers is C/100. Let Si be the maximum possible throughput that a server can
achieve, calculated as the total data scheduled by the server for the client divided by simulation time.

For all i’s for which Si < C/100, ei = Si, i.e., servers that schedule less than their fair share are allocated
their scheduled rates. This determines the first iteration of the max-min fairness calculation. These ei’s are
subtracted from C, and the remaining capacity is again divided in a max-min manner among the
remaining connections. This process is continued until all remaining servers schedule more than the fair
share in that iteration, for those servers ei = the fairshare.

8 Simulation Analysis and Results

In this section, we present a statistical analysis of simulation results for WAN, multiple hop LEO/single
hop MEO and GEO links and draw conclusions about optimal choices for TCP flavor, switch buffer sizes
and drop policy for these links. The analysis techniques we have used here are described in detail in
[JAIN91]. The next subsection gives a brief description of these techniques. The following subsections
present simulation results for WAN, LEO/MEO, and GEO links, respectively.

8.1 Analysis Technique

The purpose of analyzing results of a number of experiments is to calculate the individual effects of
contributing factors and their interactions. These effects can also help us in drawing meaningful
conclusions about the optimum values for different factors. In our case, we have to analyze the effects of
the TCP flavors, buffer sizes and drop policies in determining the efficiency and fairness for WAN, MEO
and GEO links. Thus, we have 3 factors: TCP flavor, switch buffer size and drop policy. The values a
factor can take are called ‘levels’ of the factor. For example, EPD and SD are two levels of the factor
'Drop Policy'. Table 3 lists the factors and their levels used in our simulations.

Table 3 Factors and Levels in simulations

Factor Levels

TCP flavor Vanilla Reno NewReno SACK

Switch drop policy EPD SD

Switch buffer size 0.5 RTT3 1 RTT 2 RTT

                                                
3 Here onwards, when we say 1 RTT worth of buffer, we mean a buffer size equal to the product of RTT and link bandwidth in
terms of cells.
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The analysis is done separately for efficiency and fairness, and consists of the calculating the following
terms:

1. Overall mean: This consists of the calculation of the overall mean ’Y’ of the result (efficiency or
fairness).

2. Total variation: This represents the variation in the result values (efficiency or fairness) around
the overall mean ’Y’..

3. Main effects: These are the individual contributions of a level of a factor to the overall result. A
particular main effect is associated with a level of a factor, and indicates how much variation
around the overall mean is caused by the level. We calculate the main effects of 4 TCP flavors, 3
buffer sizes, and 2 drop policies.

4. First order interactions: These are the interaction between levels of two factors. In our
experiments, there are first order interactions between each TCP flavor and buffer size, between
each drop policy and TCP flavor, and between each buffer size and drop policy.

5. Allocation of variation: This is used to explain how much each effect contributes to the total
variation. An effect (a factor or interaction), which explains a large fraction of the total variation,
is said to be important.

6. Overall standard error: This represents the experimental error associated with each result value.
The overall standard error is also used in the calculation of the confidence intervals for each
effect.

7. Confidence intervals for main effects: The 90% confidence intervals for each main effect are
calculated. If a confidence interval contains 0, then the corresponding level of the factor is not
statistically significant. If confidence intervals of two levels overlap, then the effects of both
levels are assumed to be similar.

The first step of the analysis is the calculation of the overall mean ‘Y’ of all the values. The next step is
the calculation of the individual contributions of each level ‘a’ of factor ‘A’, called the ‘Main Effect’. The
‘Main Effect’ of ‘A’ at level 'a' is calculated by subtracting the overall mean ‘Y’ from the mean of all
results with ‘a’ as the value for factor ‘A’. The ‘Main Effects’ are calculated in this way for each level of
each factor.

We then calculate the interactions between two factors. The interaction between levels of two factors is
called ‘First-order interaction’. For calculating the interaction between level ‘a’ of factor ‘A’ and level ‘b’
of factor ‘B’, an estimate is calculated for all results with ‘a’ and ‘b’ as values for factors ‘A’ and ‘B’.
This estimate is the sum of the overall mean ‘Y’ and the ‘Main Effects’ of levels ‘a’ and ‘b’. This
estimate is subtracted from the mean of all results with ‘a’ and ‘b’ as values for factors ‘A’ and ‘B’ to get
the ‘Interaction’ between levels ‘a’ and ‘b’. Although one could continue computing second and higher
order interactions, we limit our analysis to ‘First-order interactions’ only. Higher order interactions are
assumed to small or negligible.

We then perform the calculation of the ‘Total Variation’ and ‘Allocation of Variation’. First, the value of
the square of the overall mean ‘Y’ is multiplied by the total number of results. This value is subtracted
from the sum of squares of individual results to get the ‘Total Variation’ among the results. The next step
is the ‘Allocation of Total Variation’ to individual ‘Main Effects’ and ‘First-order interactions’. To
calculate the variation caused by a factor ‘A’, we take the sum of squares of the main effects of all levels
of ‘A’ and multiply this sum with the number of experiments conducted with each level of ‘A’. For
example, to calculate the variation caused by TCP flavor, we take the sum of squares of the main effects
of all its levels (Vanilla, Reno, NewReno and SACK) and multiply this sum by 6 (with each TCP flavor
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we conduct 6 different simulations involving 3 buffer sizes and 2 drop policies). In this way, the variation
caused by all factors is calculated. To calculate the variation caused by first-order interaction between two
factors ‘A’ and ‘B’, we take the sum of squares of all the first-order interactions between levels of ‘A’ and
‘B’ and multiply this sum with the number of experiments conducted with each combination of levels of
‘A’ and ‘B’.

The next step of the analysis is to calculate the overall standard error for the results. This value requires
calculation of individual errors in results and the degrees of freedom for the errors. For each result value,
an estimate is calculated by summing up the overall mean ‘Y’, main effects of the parameter levels for the
result and their interactions. This estimate is subtracted from the actual result to get the error ‘ei’ for the
result.

If a factor ‘A’ has ‘NA’ levels, then the total number of degrees of freedom is Π(NA). Thus, for our
analysis, the total number of degrees of freedom is 4 × 2 × 3 = 24. The degrees of freedom associated
with the overall mean ‘Y’ is 1. The degrees of freedom associated with ‘main effects’ of a factor ‘A’ are
‘NA – 1’. Thus, degrees of freedom associated with all ‘main effects’ are ∑(NA - 1). Similarly, the degrees
of freedom associated with the first-order interaction between 2 factors ‘A’ and ‘B’ are (NA - 1)×(NB - 1).
Thus, degrees of freedom associated with all first-order interactions are ∑(NA - 1)×(NB - 1), with the
summation extending over all factors. In our analysis, the degrees of freedom associated with all ‘main
effects’ are 3 + 1 + 2 = 6 and the degrees of freedom associated with all first-order interactions are (3 × 1)
+ (3 × 2) + (1 × 2) = 11.

Since we use the overall mean ‘Y’, the main effects of individual levels and their first-order interactions
to calculate the estimate, the value of the degrees of freedom for errors ‘de’ is calculated as follows:

( ) ( ) ( ) ( )1111 −×−−−−−= ∑∑∏ NNNNd BAAAe

 In our case, de = 24 – 1 – 6 – 11 = 6.

To calculate the overall standard error 'se', the sum of squares of all individual errors ‘ei’ is divided by the
number of degrees of freedom for errors ‘de’ (6 in our case). The square root of the resulting value is the
overall standard error.

( ) des eie ∑= 2

Finally, based on the overall standard error, we calculate the 90% confidence intervals for all 'main
effects' of each factor. For this purpose, we calculate the standard deviation ‘sA’ associated with each
factor ‘A’ as follows:

( ) ( )∏−×= NNss AAeA
1

Here, ‘NA’ is the number of levels for factor ‘A’ and Π(NA) is the total number of degrees of freedom.

The variation around the ‘main effect’ of all levels of a factor ‘A’ to get a 90% confidence level is given
by the standard deviation ‘sA’ multiplied by t[0.95,de], where t[0.95,de] values are quantiles of the t
distribution [JAIN91].

Hence, if ‘MEa’  is the value of the main effect of level ‘a’ of factor ‘A’, then the 90% confidence interval
for ‘ME a’ is {ME a ± sA × t[0.95,de]}. The main effect value is statistically significant only if the
confidence interval does not include 0.
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This was only a brief description of the techniques used to analyze simulation results. The detailed
description of the analysis method can be found in [JAIN91].

8.2 Simulation Results for WAN links

Table 4 presents the individual efficiency and fairness results for WAN links. Table 5 shows the
calculation of ‘Total Variation’ in WAN results and ‘Allocation of Variation’ to main effects and first-
order interactions. Table 6 shows the 90% confidence intervals for the main effects. A negative value of
main effect implies that the corresponding level of the factor decreases the overall efficiency and vice
versa. If a confidence interval encloses 0, the corresponding level of the factor is assumed to be not
significant in determining performance.

Table 4 Simulation Results for WAN links

Buffer = 0.5 RTT Buffer = 1 RTT Buffer = 2 RTTDrop
Policy

TCP
Flavor

Efficiency Fairness Efficiency Fairness Efficiency Fairness

Vanilla 0.4245 0.5993 0.5741 0.9171 0.7234 0.9516

Reno 0.6056 0.8031 0.7337 0.9373 0.8373 0.9666

NewReno 0.8488 0.8928 0.8866 0.9323 0.8932 0.9720

EPD

SACK 0.8144 0.7937 0.8948 0.8760 0.9080 0.8238

Vanilla 0.4719 0.6996 0.6380 0.9296 0.8125 0.9688

Reno 0.6474 0.8230 0.8043 0.9462 0.8674 0.9698

NewReno 0.8101 0.9089 0.8645 0.9181 0.8808 0.9709

SD

SACK 0.7384 0.6536 0.8951 0.8508 0.9075 0.8989
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Table 5 Allocation of Variation for WAN Efficiency and Fairness Values

Component Sum of Squares %age of Variation

Efficiency Fairness Efficiency Fairness

Individual Values 14.6897 18.6266

Overall Mean 14.2331 18.3816

Total Variation 0.4565 0.2450 100 100

Main Effects:

        TCP Flavor 0.2625 0.0526 57.50 21.49

         Buffer Size 0.1381 0.1312 30.24 53.55

         Drop Policy 0.0016 0.0002 0.34 0.09

First-order Interactions:

       TCP Flavor-Buffer Size 0.0411 0.0424 8.99 17.32

      TCP Flavor-Drop Policy 0.0104 0.0041 2.27 1.68

      Buffer Size-Drop Policy 0.0015 0.0009 0.33 0.38

Standard Error, se = 0.0156(For Efficiency), 0.0472(For Fairness)
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Table 6 Main Effects and their Confidence Intervals for WAN

Factor Main Effect Confidence Interval

Efficiency Fairness Efficiency Fairness

TCP Flavor:

Vanilla -0.1627 -0.0308 (-0.1734,-0.1520) (-0.0632,0.0016)

Reno -0.0208 0.0325 (-0.0315,-0.0101)  (0.0000, 0.0649)

NewReno 0.0939 0.0573 (0.0832,0.1046)  (0.0248, 0.0898)

SACK 0.0896 -0.0590 (0.0789,0.1003)  (-0.0914, -0.0265)

Buffer Size:

0.5 RTT -0.1000 -0.1034 (-0.1087,-0.0912)  (-0.1299,-0.0769)

1 RTT 0.0163 0.0382 (0.0076,0.0250)  (0.0117, 0.0647)

2 RTT cells 0.0837 0.0651 (0.0749,0.0924)  (0.0386, 0.0916)

Drop Policy:

EPD -0.0081 -0.0030 (-0.0142, -0.0019)  (-0.0217,0.0157)

SD 0.0081 0.0030 (0.0019,0.0142)  (-0.0157, 0.0217)

8.2.1 Analysis of Efficiency va lues: Results and Observations

 The following conclusions can be drawn from the above tables:

1. TCP flavor explains 57.5% of the variation and hence is the major factor in determining efficiency. It can be
established from confidence intervals of effects of different TCP flavors that NewReno and SACK have better
efficiency performance than Vanilla and Reno. Since the confidence intervals of effects of SACK and
NewReno overlap, we cannot say that one performs better than the other. Confidence intervals for the effects
of Vanilla and Reno suggest that Reno performs better than Vanilla.

2. Buffer size explains 30.24% of the variation and hence is the next major determinant of efficiency.
Confidence intervals for effects of different buffer sizes clearly indicate that efficiency increases substantially
as buffer size is increased. However, if we look at individual efficiency values, it can be noticed that only
Vanilla and Reno get substantial increase in efficiency as buffer size is increased from 1 RTT to 2 RTT.

3. The interaction between buffer size and TCP flavor explains 8.99% of the variation. The large interaction is
because of the fact that only Vanilla and Reno show substantial gains in efficiency as the buffer size is
increased from 1 RTT to 2 RTT. For SACK and NewReno, increasing buffer sizes from 1 RTT to 2 RTT does
not bring much increase in efficiency. This indicates that SACK and NewReno can tolerate the level of packet
loss caused by a buffer size of 1 RTT.
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4. Though the variation explained by drop policy is negligible, it can be seen that for Vanilla and Reno, SD
results in better efficiency than EPD for the same buffer size. This is because for EPD, after crossing the
threshold R, all new packets are dropped and buffer occupancy does not increase much beyond R. However
for SD, packets of VCs with low buffer occupancy are still accepted. This allows the buffer to be utilized
more efficiently and fairly and to better efficiency as well as fairness.

5. For NewReno and SACK, the efficiency values are similar for EPD and SD for same buffer size. This is
because NewReno and SACK are much more tolerant of packet loss than Vanilla and Reno. Thus the small
decrease in number of packets dropped due to increased buffer utilization does not cause a significant increase
in efficiency.

6. It can be noticed from individual efficiency values that SACK generally performs a little better than
NewReno except when buffer size is very low (0.5 RTT). Better performance of NewReno for very low
buffer size can be explained as follows. Low buffer size means that a large number of packets are dropped.
When in fast retransmit phase, NewReno retransmits a packet for every partial ACK received. However,
SACK does not retransmit any packet till PIPE goes below CWND value. A large number of dropped packets
mean that not many duplicate or partial ACKs are forthcoming. Hence PIPE may not reduce sufficiently to
allow SACK to retransmit all the lost packets quickly. Thus, SACK’s performance may perform worse than
NewReno under extreme congestion.

We conclude that SACK and NewReno give best performance in terms of efficiency for WAN links. For
NewReno and SACK, a buffer size of 1 RTT is sufficient for getting close to best efficiency with either EPD or
SD as the switch drop policy.

8.2.2 Analysis of Fairness values: Results and Observations

1. Buffer size largely determines fairness as 53.55 % of the variation is explained by the buffer size. Confidence
intervals for effects of buffer sizes suggest that the fairness increases substantially as buffer size is increased
from 0.5 RTT to 1 RTT.  Since confidence intervals for buffers of 1 RTT and 2 RTTs overlap, it cannot be
concluded that 2 RTT buffers result in better performance than 1 RTT buffers.

2. TCP flavor is the next major factor in determining fairness as it explains 21.49 % of the variation. Confidence
intervals for effects of TCP flavor on fairness, clearly suggest that NewReno results in the best fairness and
SACK results in the worst fairness.

3. SD only increases fairness for low buffer sizes. Overall, both the allocation of variation to drop policy, and
confidence intervals for effects of SD and EPD suggest that SD does not result in higher fairness when
compared to EPD for bursty traffic in WAN links unless buffer sizes are small.

8.3 Simulation Results for MEO links

Table 7 presents the individual efficiency and fairness results for MEO links. Table 8 shows the
calculation of ‘Total Variation’ in MEO results and ‘Allocation of Variation’ to main effects and first-
order interactions. Table 9 shows the 90% confidence intervals for main effects.
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Table 7 Simulation Results for MEO Links

Buffer = 0.5 RTT Buffer = 1 RTT Buffer = 2 RTTDrop
Policy

TCP
Flavor

Efficiency Fairness Efficiency Fairness Efficiency Fairness

Vanilla 0.8476 0.9656 0.8788 0.9646 0.8995 0.9594

Reno 0.8937 0.9659 0.9032 0.9518 0.9091 0.9634

NewReno 0.9028 0.9658 0.9105 0.9625 0.9122 0.9616

EPD

SACK 0.9080 0.9517 0.9123 0.9429 0.9165 0.9487

Vanilla 0.8358 0.9649 0.8719 0.9684 0.9009 0.9615

Reno 0.8760 0.9688 0.8979 0.9686 0.9020 0.9580

NewReno 0.8923 0.9665 0.8923 0.9504 0.8976 0.9560

SD

SACK 0.9167 0.9552 0.9258 0.9674 0.9373 0.9594

Table 8 Allocation of Variation for MEO Efficiency and Fairness Values

Component Sum of Squares %age of Variation

Efficiency Fairness Efficiency Fairness

Individual Values 19.3453 22.1369

Overall Mean 19.3334 22.1357

Total Variation 0.0119 0.0012 100 100

Main Effects:

        TCP Flavor 0.0067 0.0003 56.75 29.20

         Buffer Size 0.0026 0.0001 21.73 7.70

         Drop Policy 0.0001 0.0001 0.80 6.02

First-order Interactions:

       TCP Flavor-Buffer Size 0.0016 0.0001 13.42 10.16

      TCP Flavor-Drop Policy 0.0007 0.0003 6.11 22.60

      Buffer Size-Drop Policy 0.0001 0.0001 0.53 6.03

Standard Error, se = 0.0036(For Efficiency), 0.0060(For Fairness)
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Table 9 Main Effects and Their Confidence Intervals for MEO

Factor Mean Effect Confidence Interval

Efficiency Fairness Efficiency Fairness

TCP Flavor:

Vanilla -0.0251 0.0037 (-0.0276,-0.0226) (-0.0004,0.0078)

Reno -0.0005 0.0024 (-0.0030,0.0019) (-0.0017,0.0065)

NewReno 0.0038 0.0001 (0.0013,0.0062) (-0.0040,0.0042)

SACK 0.0219 -0.0062 (0.0194,0.0244) (-0.0103,-0.0020)

Buffer Size:

0.5 RTT -0.0134 0.0027 (-0.0154,-0.0114) (-0.0007,0.0060)

1 RTT 0.0016 -0.0008 (-0.0005,0.0036) (-0.0042,0.0026)

2 RTT 0.0119 -0.0019 (0.0098,0.0139) (-0.0052,0.0015)

Drop Policy:

EPD 0.0020 -0.0017 (0.0006,0.0034) (-0.0041,0.0007)

SD -0.0020 0.0017 (-0.0034,-0.0006) (-0.0007,0.0041)

8.3.1 Analysis of Efficiency va lues: Results and Observations

1. TCP flavor explains 56.75% of the variation and hence is the major factor in deciding efficiency
value. Non overlapping confidence intervals for effects of TCP flavors clearly indicate that SACK
results in best efficiency followed by NewReno, Reno and Vanilla. However, it should be noticed that
difference in performance for different TCP flavors is not very large.

2. Buffer size explains 21.73% of the variation and hence is the next major determinant of efficiency.
Confidence intervals for effects of different buffer sizes indicate that efficiency does increase but only
slightly as buffer size is increased.  However, Vanilla’s efficiency increases by about 5% with
increase in buffer size from 0.5 RTT to 2 RTT. The corresponding increase in efficiency for other
TCP flavors is around 2% or less. This also explains the large interaction between buffer sizes and
TCP flavors (explaining 13.42% of the total variation).

3. Drop policy does not cause any significant difference in efficiency values.

Thus, SACK gives best performance in terms of efficiency for MEO links. However, difference in
performance for SACK and other TCP flavors is not substantial. For SACK, NewReno and FRR, the
increase in efficiency with increasing buffer size is very small. For MEO links, 0.5 RTT is the optimal
buffer size for all non-Vanilla TCP flavors with either EPD or SD as drop policy.
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8.3.2 Analysis of Fairness values: Results and Observations

As we can see from individual fairness values, there is not much difference between fairness values for
different TCP flaovrs, buffer sizes or drop policies. This claim is also supported by the fact that all 9 main
effects have very small values, and for 8 of them, their confidence interval encloses 0. Thus, for MEO
delays, 0.5 RTT buffer is sufficient for good fairness with any drop policy for all flavors of TCPs.

8.3.3 Simulation Results for GEO links

Table 10 presents the individual efficiency and fairness results for GEO links. Table 11 shows the
calculation of ‘Total Variation’ in GEO results and ‘Allocation of Variation’ to main effects and first-
order interactions. Table 12 shows the 90% confidence intervals for main effects.

Table 10 Simulation Results for GEO Links

Buffer = 0.5 RTT Buffer = 1 RTT Buffer = 2 RTTDrop
Policy

TCP
Flavor

Efficiency Fairness Efficiency Fairness Efficiency Fairness

Vanilla 0.7908 0.9518 0.7924 0.9365 0.8478 0.9496

Reno 0.8050 0.9581 0.8172 0.9495 0.8736 0.9305

NewReno 0.8663 0.9613 0.8587 0.9566 0.8455 0.9598

EPD

SACK 0.9021 0.9192 0.9086 0.9514 0.9210 0.9032

Vanilla 0.8080 0.9593 0.8161 0.9542 0.8685 0.9484

Reno 0.8104 0.9671 0.7806 0.9488 0.8626 0.9398

NewReno 0.7902 0.9257 0.8325 0.9477 0.8506 0.9464

SD

SACK 0.9177 0.9670 0.9161 0.9411 0.9207 0.9365
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Table 11 Allocation of Variation for GEO Efficiency and Fairness Values

Component Sum of Squares %age of Variation

Efficiency Fairness Efficiency Fairness

Individual Values 17.3948 21.4938

Overall Mean 17.3451 21.4884

Total Variation 0.0497 0.0054 100 100

Main Effects:

        TCP Flavor 0.0344 0.0008 69.16 14.47

         Buffer Size 0.0068 0.0006 13.65 11.48

         Drop Policy 0.0001 0.0001 0.25 2.31

First-order Interactions:

       TCP Flavor-Buffer Size 0.0037 0.0012 7.54 22.16

      TCP Flavor-Drop Policy 0.0025 0.0014 4.96 26.44

      Buffer Size-Drop Policy 0.0002 0.0001 0.41 1.45

Standard Error, se = 0.0182(For Efficiency), 0.0139(For Fairness)
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Table 12 Main Effects and Their Confidence Intervals for GEO

Factor Mean Effect Confidence Interval

Efficiency Fairness Efficiency Fairness

TCP Flavor:

Vanilla -0.0295 0.0037 (-0.0420,-0.0170) (-0.0058,0.0133)

Reno -0.0252 0.0027 (-0.0377,-0.0127) (-0.0068,0.0123)

NewReno -0.0095 0.0034 (-0.0220,0.0030) (-0.0062,0.0129)

SACK 0.0642 -0.0098 (0.0517,0.0768) (-0.0194,-0.0003)

Buffer Size:

0.5 RTT -0.0138 0.0050 (-0.0240,-0.0036) (-0.0029,0.0128)

1 RTT -0.0099 0.0020 (-0.0201,0.0004) (-0.0058,0.0098)

2 RTT 0.0237 -0.0070 (0.0134,0.0339) (-0.0148,0.0009)

Drop Policy:

EPD 0.0023 -0.0023 (-0.0049,0.0095) (-0.0078,0.0033)

SD -0.0023 0.0023 (-0.0095,0.0049) (-0.0033,0.0078)

In the following 2 subsections, we present the results of analyzing efficiency and fairness values for GEO
links.

8.3.4 Analysis of Efficiency va lues: Results and Observations

1. TCP flavor explains 69.16% of the variation and hence is the major factor in deciding efficiency
value. Confidence intervals for effects of TCP flavors clearly indicate that SACK results in
substantially better efficiency than other TCP flavors. Since confidence intervals overlap for
NewReno, Reno and Vanilla, one can not be said to be better than other in terms of efficiency.

2. Buffer size explains 13.65% of the variation and interaction between buffer size and TCP flavors
explains 7.54% of the variation. Confidence intervals for 0.5 RTT and 1 RTT buffer overlap, thus
indicating similar performance. There is a marginal improvement in performance as buffer size is
increased to 2 RTT. Vanilla and Reno show substantial efficiency gains as buffer size is increased
from 1 RTT to 2 RTT. There is not much improvement for Vanilla and FRR when buffer is increased
from 0.5 RTT to 1 RTT. Hence, in this case, 1 RTT buffer does not sufficiently reduce number of
packets dropped to cause an increase in efficiency. However, for a buffer of 2 RTT, the reduction in
number of dropped packets is enough to improve Vanilla and Reno’s performance.

3. Drop policy does not have an impact in terms of efficiency as indicated by negligible allocation of
variation to drop policy.
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From the observations above, it can be concluded that SACK with 0.5 RTT buffer is the optimal choice
for GEO links with either of EPD and SD as switch drop policy.

8.3.5 Analysis of Fairness values: Results and Observations

The conclusion here is similar to MEO delays. As we can see from individual fairness values, there is not
much difference between fairness values for different TCP flavors, buffer sizes or drop policies. All 9
main effects have very small values, and for 8 of them, their confidence intervals enclose 0. Thus, for
GEO delays, 0.5 RTT buffer is sufficient for good fairness with any drop policy for all types of TCPs.

8.4 Overall Analysis

It is interesting to notice how the relative behavior of different TCP flavors change as link delay
increases.

As link delay increases, SACK clearly comes out to be superior than NewReno in terms of efficiency. For
WAN, SACK and NewReno have similar efficiency values. For MEO, SACK performs a little better than
NewReno and for GEO, SACK clearly outperforms NewReno. The reason for this behavior is that
NewReno needs N RTTs to recover from N packet losses in a window whereas SACK can recover faster,
and start increasing CWND again. This effect becomes more and more pronounced as RTT increases.

SD does not always lead to increase in fairness as compared to EPD. This result can again be attributed to
nature of WWW traffic. SD accepts packets of only under-represented VCs after crossing the threshold R.
For sufficient buffer size, many of these VCs are under represented in switch buffer because they do not
have a lot of data to send. Thus, SD fails to cause significant increase in fairness.

It has been already concluded that for long delay links, end system policies are more important than
switch drop policies in terms of efficiency and fairness [GOYAL98]. Results presented in this
contribution confirm this conclusion for WWW traffic.

9 Summary

In this contribution we studied the effects of TCP mechanisms, UBR+ drop policies and buffer sizes on
the performance of WWW traffic over satellite networks. The following overall conclusions can be made
about the efficiency and fairness of WWW TCP traffic over ATM-UBR+ for long delay networks:

Efficiency

1. End system policies: SACK generally results in the best efficiency, especially as the delay increases.
For lower delay and small buffer sizes, NewReno can perform better than SACK.

2. Drop policies: For lower delays (WAN), selective drop improves performance over EPD. As the delay
increases, buffer sizes used in our experiments become larger, and selective drop does not have much
effect.

3. Buffer size: Increasing buffer size increases performance, but the effect of buffer size in much more
significant for lower delay.

Fairness

1. End system policies: SACK hurts fairness in lower delay (WAN) compared to NewReno. SACK and
NewReno have similar fairness for higher delay.
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2. Drop policies: Drop policies do not have much effect on long delay networks.

3. Buffer size: Increasing buffer sizes increases fairness, but for sufficiently large buffers this effect is
negligible.

In summary, as delay increases, the marginal gains of end system policies become more important
compared to the marginal gains of drop policies and larger buffers.
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