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� Introduction

The Unspeci�ed Bit Rate �UBR� service in ATM networks does not have any congestion control mechanisms ���� The
basic UBR service employs a tail drop policy where cells are drop when the swith bu�er over	ows� As a result
 TCP
connections using ATM�UBR service with limited switch bu�ers experience low throughput ��
 
 �
 �
 ���� In our
previous paper ��� we analyzed several enhancements to UBR
 and showed that these enhancements can improve the
performance of TCP slow start and congestion avoidance algorithms over UBR� We also analyzed the performance
of Reno TCP over UBR and UBR�
 and concluded that fast retransmit and recovery hurts the performance of TCP
in the presence of congested losses over wide area networks�

This contribution discusses the performance of TCP with selective acknowledgements �SACK TCP� over the UBR�
service category� We compare the performance of SACK TCP with slow start and Reno TCP� Simulation results of
the performance the SACK TCP with several UBR� drop policies over terrestrial and satellite links are presented�

Section � describes the TCP congestion control mechanisms including the Selective Acknowledgements �SACK�
option for TCP� Section � describes our implementation of SACK TCP and Section  analyzes the features and
retransmission properties of SACK TCP� We also describe a change to TCP�s fast retransmit and recovery
 proposed
in ���� and named �New Reno� in ����� Section � discusses some issues relevant to the performance of TCP over
satellite networks� The remainder of the contribution presents simulation results comparing the performance of
various TCP congestion avoidance methods�

� TCP Congestion Control

TCP�s congestion control mechanisms are described in detail in ���
 ���� TCP uses a window based 	ow control
policy� The variable RCVWND is used as a measure of the receiver�s bu�er capacity� When a destination TCP host
receives a segment
 it sends an acknowledgement �ACK� for the next expected segment� TCP congestion control
is build on this window based 	ow control� The following subsections describe the various TCP congestion control
policies�

��� Slow Start and Congestion Avoidance

The sender TCP maintains a variable called congestion window �CWND� to measure the network capacity� The
number of unacknowledged packets in the network is limited to CWND or RCVWND whichever is lower� Initially

CWND is set to one segment and it increases by one on the receipt of each new ACK until it reaches a maximum
�typically ����� bytes�� It can be shown that CWND doubles every round trip time and this corresponds to an
exponential increase in the CWND every round trip time �����

If a segment is lost
 the receiver sends duplicate ACKs on receiving subsequent segments� The sender maintains
a retransmission timeout for the last unacknowledged packet� Congestion is indicated by the expiration of the
retransmission timeout� When the timer expires
 the sender saves half the CWND in a variable called SSTHRESH

and sets CWND to � segment� The sender then retransmits segments starting from the lost segment� CWND is
increased by one on the receipt of each new ACK until it reaches SSTHRESH� This is called the slow start phase�
After that
 CWND increases by one segment every round trip time� This results in a linear increase of CWND every
round trip time� Figure � shows the slow start and congestion avoidance phases for at typical TCP connection�

��� Fast Retransmit and Recovery

Current TCP implementations use a coarse granularity �typically ��� ms� timer for the retransmission timeout� As a
result
 during congestion
 the TCP connection can lose much time waiting for the timeout� In Figure �
 the horizontal
CWND line shows the time lost in waiting for a timeout to occur� During this time
 the TCP neither sends new
packets nor retransmits lost packets� Moreover
 once the timeout occurs
 the CWND is set to � segment
 and the
connection takes several round trips to e�ciently utilize the network� TCP Reno implements the fast retransmit and
recovery algorithms that enable the connection to quickly recover from isolated segment losses �����

When a TCP receives an out�of�order segment
 it immediately sends a duplicate acknowledgement to the sender�
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Figure �� TCP Slow Start and Congestion Avoidance

When the sender receives three duplicate ACKs
 it concludes that the segment indicated by the ACKs has been lost

and immediately retransmits the lost segment� The sender then reduces CWND to half �plus � segments� and also
saves half the original CWND value in SSTHRESH� Now for each subsequent duplicate ACK
 the sender in	ates
CWND by one and tries to send a new segment� E�ectively
 the sender waits for half a round trip before sending
one segment for each subsequent duplicate ACK it receives� As a result
 the sender maintains the network pipe at
half of its capacity at the time of fast retransmit�

Approximately one round trip after the missing segment is retransmitted
 its ACK is received �assuming the retrans�
mitted segment was not lost�� At this time
 instead of setting CWND to one segment and proceeding to do slow
start until CWND reaches SSTHRESH
 the TCP sets CWND to SSTHRESH
 and then does congestion avoidance�
This is called the fast recovery algorithm�

��� A Modi�cation to Fast Retransmit and Recovery� TCP New Reno

It has been known that fast retransmit and recovery cannot recover from multiple packet losses� Figure � shows a
case when three consecutive packets are lost from a window
 the sender TCP incurs fast retransmit twice and then
times out� At that time
 SSTHRESH is set to one�eighth of the original congestion window value �CWND in the
�gure� As a result
 the exponential phase lasts a very short time
 and the linear increase begins at a very small
window� Thus
 the TCP sends at a very low rate and loses much throughput�

The �fast�retransmit phase� was introduced in ����
 in which the sender remembers the highest sequence number sent
�RECOVER� when the fast retransmit is �rst triggered� After the �rst unacknowledged packet is retransmitted
 the
sender follows the usual fast recovery algorithm and in	ates the CWND by one for each duplicate ACK it receives�
When the sender receives an acknowledgement for the retransmitted packet
 it checks if the ACK acknowledges all
segments including RECOVER� If so
 the ACK is a new ACK
 and the sender exits the fast retransmit�recovery
phase
 sets its CWND to SSTHRESH and starts a linear increase� If on the other hand
 the ACK is a partial ACK

i�e�
 it acknowledges the retransmitted segment
 and only a part of the segments before RECOVER
 then the sender
immediately retransmits the next expected segment as indicated by the ACK� This continues until all segments
including RECOVER are acknowledged� This mechanism ensures that the sender will recover from N
segment losses in N round trips�

As a result
 the sender can recover frommultiple packet losses without having to time out� In case of small propagation
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Figure �� TCP Fast Retransmit and Recovery

delays
 and coarse timer granularities
 this mechanism can e�ectively improve TCP throughput over vanilla TCP�
Figure � shows the congestion window graph of a TCP connection for three contiguous segment losses� The TCP
retransmits one segment every round trip time �shown by the CWND going down to � segment� until a new ACK is
received�

��� Selective Acknowledgements

TCP with Selective Acknowledgements �SACK TCP� has been proposed to e�ciently recover from multiple segment
losses ����� SACK TCP acknowledgement contain additional information about the segments have been received by
the destination� When the destination receives out�of�order segments
 it sends duplicate ACKs �SACKs� acknowl�
edging the out�of�order segments it has received� From these SACKs
 the sending TCP can reconstruct information
about the segments not received at the destination� When the sender receives three duplicate ACKs
 it retransmits
the �rst lost segment
 and in	ates its CWND by one for each duplicate ACK it receives� This behavior is the same as
Reno TCP� However
 when the sender
 in response to duplicate ACKs is allowed by the window to send a segment

it uses the SACK information to retransmit lost segments before sending new segments� As a result
 the sender can
recover from multiple dropped segments in about one round trip� Figure  shows the congestion window graph of
a SACK TCP recovering from segment losses� During the time when the congestion window is in	ating �after fast
retransmit has incurred�
 the TCP is sending missing packets before any new packets�

� SACK TCP Implementation

In this subsection
 we describe our implementation of SACK TCP and some properties of SACK� Our implementation
is based on the SACK implementation described in ���
 ��
 ����

The SACK option is negotiated in the SYN segments during TCP connection establishment� The SACK information
is sent with an ACK by the data receiver to the data sender to inform the sender of out�of�sequence segments received�
The format of the SACK packet has been proposed in ����� The SACK option is sent whenever out of sequence data
is received� All duplicate ACK�s contain the SACK option� The option contains a list of some of the contiguous
blocks of data already received by the receiver� Each data block is identi�ed by the sequence number of the �rst
byte in the block �the left edge of the block�
 and the sequence number of the byte immediately after the last byte
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of the block� Because of the limit on the maximum TCP header size
 at most three SACK blocks can be speci�ed in
one SACK packet�

The receiver keeps track of all the out�of�sequence data blocks received� When the receiver generates a SACK
 the
�rst SACK block speci�es the block of data formed by the most recently received data segment� This ensures that
the receiver provides the most up to date information to the sender� After the �rst SACK block
 the remaining
blocks can be �lled in any order�

The sender also keeps a table of all the segments sent but not ACKed� When a segment is sent
 it is entered into
the table� When the sender receives an ACK with the SACK option
 it marks all the segments speci�ed in the
SACK option blocks as SACKed� The entries for each segment remain in the table until the segment is ACKed� The
remaining behavior of the sender is very similar to Reno implementations with the modi�cation suggested in Section
��� �� When the sender receives three duplicate ACKs
 it retransmits the �rst unacknowledged packet� During the
fast retransmit phase
 when the sender is sending one segment for each duplicate ACK received
 it �rst tries to
retransmit the holes in the SACK blocks before sending any new segments� When the sender retransmits a segment

it marks the segment as retransmitted in the table� If a retransmitted segment is lost
 the sender times out and
performs slow start� When a timeout occurs
 the sender resets the SACK bits in the table�

During the fast retransmit phase
 the sender maintains a variable PIPE that indicates how many bytes are currently
in the network pipe� When the third duplicate ACK is received
 PIPE is set to the value of CWND and CWND is
reduced by half� For every subsequent duplicate ACK received
 PIPE is decremented by one segment because the
ACK denotes a packet leaving the pipe� The sender sends data �new or retransmitted� only when PIPE is less than
CWND� This implementation is equivalent to in	ating the CWND by one segment for every duplicate ACK and
sending segments if the number of unacknowledged bytes is less than the congestion window value�

When a segment is sent
 PIPE is incremented by one� When a partial ACK is received
 PIPE is decremented by two�
The �rst decrement is because the partial ACK represents a retransmitted segment leaving the pipe� The second
decrement is done because the original segment that was lost
 and had not been accounted for
 is now actually
considered to be lost�

�It is not clear to us whether the modi�cation proposed in ���� is necessary with the SACK option� The modi�cation is under further
study�
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� TCP� Analysis of Recovery Behavior

In this section
 we discuss the behavior of SACK TCP� We �rst analyze the properties of Reno TCP and then lead
into the discussion of SACK TCP� Vanilla TCP without fast retransmit and recovery �we refer to TCP with only
slow start and congestion avoidance as vanilla TCP�
 will be used as the basis for comparison� Every time congestion
occurs
 TCP tries to reduce its CWND window by half and then enters congestion avoidance� In the case of vanilla
TCP
 when a segment is lost
 a timeout occurs
 and the congestion window reduces to one segment� From there

it takes about log��CWND��� � TCP segment size� RTTs for CWND to reach the target value� This behavior is
una�ected by the number of segments lost from a particular window�

��� Reno TCP

When a single segment is lost from a window
 Reno TCP recovers within approximately one RTT of knowing about
the loss or two RTTs after the lost packet was �rst sent� The sender receives three duplicate ACKS about one RTT
after the dropped packet was sent� It then retransmits the lost packet� For the next round trip
 the sender receives
duplicate ACKs for the whole window of packets sent after the lost packet� The sender waits for half the window
and then transmits a half window worth of new packets� All of this takes about one RTT after which the sender
receives a new ACK acknowledging the retransmitted packet and the entire window sent before the retransmission�
CWND is set to half its original value and congestion avoidance is performed�

When multiple packets are dropped
 Reno TCP cannot recover and may result in a timeout� The fast retransmit
phase modi�cation can recover from multiple packet losses by retransmitting a single packet every round trip time�

��� SACK TCP

In this subsection we show that SACK TCP can recover from multiple packet losses more e�ciently than Reno or
vanilla TCP�

Suppose that at the instant when the sender learns of the �rst packet loss �from three duplicate ACKs�
 the value of
the congestion window is CWND� Thus
 the sender has CWND bytes of data waiting to be acknowledged� Suppose
also that the network drops a block of data which is CWND�n bytes long �This will typically result in several
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segments being lost�� After one RTT of sending the �rst dropped segment
 the sender receives three duplicate ACKs
for this segment� It retransmits the segment
 and sets PIPE to CWND � �
 and sets CWND to CWND��� For each
duplicate ACK received
 PIPE is decremented by �� When PIPE reaches CWND
 then for each subsequent duplicate
ACK received
 another segment can be sent� All the ACKs from the previous window take � RTT to return� For
half RTT nothing is sent �since PIPE � CWND�� For the next half RTT
 if CWND�n bytes were dropped
 then only
CWND�� � CWND�n bytes �of retransmitted or new segments� can be sent� Thus
 all the dropped segments can be
retransmitted in � RTT if

CWND��� CWND�n � CWND�n

i�e�
 n � � Therefore
 for SACK TCP to be able to retransmit all lost segments in one RTT
 the network can drop
at most CWND� bytes from a window of CWND�

Now
 we calculate the maximum amount of data that can be dropped for SACK TCP to be able to retransmit
everything in two RTTs� Suppose again that CWND�n bytes are dropped from a window of size CWND� Then
 in
the �rst RTT from receiving the � duplicate ACKs
 the sender can retransmit upto CWND�� � CWND�n bytes� In
the second RTT
 the sender can retransmit ��CWND�� � CWND�n� bytes� This is because for each retransmitted
segment in the �rst RTT
 the sender receives a partial ACK that indicates that the next segment is missing� As a
result
 PIPE is decremented by �
 and the sender can send � more segments �both of which could be retransmitted
segments� for each partial ACK it receives� Thus
 all the dropped segments can be retransmitted in � RTTs if

CWND��� CWND�n� ��CWND��� CWND�n� � CWND�n

i�e� n � ���� This means that at most ��CWND�� bytes can be dropped from a window of size CWND for SACK
TCP to be able to recover in � RTTs�

Generalizing the above argument
 we have the following result� The number of RTTs needed by SACK TCP
to recover from a loss of CWND�n is at most log �n��n���� for n � �� If more than half the CWND is
dropped
 then there will not be enough duplicate ACKs for PIPE to become large enough to transmit any segments
in the �rst RTT� Only the �rst dropped segment will be retransmitted on the receipt of the third duplicate ACK�
In the second RTT
 the ACK for the retransmitted packet will be received� This is a partial ACK and will result in
PIPE being decremented by � so that � packets can be sent� As a result
 PIPE will double every RTT
 and SACK
will recover no slower than slow start ���	 �
�� SACK would still be advantageous because timeout would be
still avoided unless a retransmitted packet were dropped�

� The ATM�UBR� Service

The basic UBR service can be enhanced by implementing intelligent drop policies at the switches� A comparative
analysis of various drop policies on the performance of Vanilla and Reno TCP over UBR is presented in ���� Section
��� brie	y summarizes the results of our earlier work� This section brie	y describes the drop policies
 and discusses
the simulation results of TCP over satellite UBR with intelligent cell drop�

��� Early Packet Discard

The Early Packet Discard policy ��� maintains a threshold R
 in the switch bu�er� When the bu�er occupancy exceeds
R
 then all new incoming packets are dropped� Partially received packets are accepted if possible� ��� shows that
EPD improves the e�ciency of TCP over UBR but does not improve fairness� The e�ect of EPD is less pronounced
for large delay�bandwidth networks� In satellite networks
 EPD has little or no e�ect in the performance of TCP
over UBR�

��� Selective Packet Drop and Fair Bu�er Allocation

These schemes use per�VC accounting to maintain the current bu�er utilization of each UBR VC� A fair allocation is
calculated for each VC
 and if the VC�s bu�er occupancy exceeds its fair allocation
 its subsequent incoming packet
is dropped� Both schemes maintain a threshold R
 as a fraction of the bu�er capacity K� When the total bu�er
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occupancy exceeds R�K
 new packets are dropped depending on the V Ci�s bu�er occupancy �Yi�� In the selective
drop scheme
 a VC�s packet is dropped if

�X � R� AND �Yi �Na�X � Z�

where Na is the number of VCs with at least one cell the bu�er
 and Z is another threshold parameter �� � Z � ��
used to scale the e�ective drop threshold�

The Fair Bu�er Allocation proposed in ��� is similar to Selective Drop and uses the following formula�

�X � R� AND �Yi �Na�X � Z � ��K � R���X �R���

��� Performance of TCP over UBR	� Summary of Earlier Results

In our earlier work ��
 ��� we discussed the following results�

� For N TCP connections
 the switch requires a bu�er size of the sum of the receiver windows of the TCP
connections�

� With limited bu�ers
 TCP over plain UBR results in poor performance�

� TCP performance over UBR can be improved by intelligent drop policies like Early Packet Discard
 Selective
Drop and Fair Bu�er Allocation�

� TCP fast retransmit and recover improves TCP performance over LANs
 and actually degrades performance
over WANs in the presence of congestons�

� Simulation Results with SACK TCP over UBR�

This section presents the simulation results of the various enhancements of TCP and UBR presented in the previous
sections�


�� The Simulation Model

All simulations use the N source con�guration shown in Figure �� All sources are identical and in�nite TCP sources�
The TCP layer always sends a segment as long as it is permitted by the TCP window� Moreover
 tra�c is unidirec�
tional so that only the sources send data� The destinations only send ACKs� The performance of TCP over UBR
with bidirectional tra�c is a topic of further study� The delayed acknowledgement timer is deactivated
 and the
receiver sends an ACK as soon as it receives a segment�

Link delays are � microseconds for LAN con�gurations and � milleseconds for WAN con�gurations� This results in
a round trip propagation delay of �� microseconds for LANs and �� milliseconds for WANs respectively�

The TCP segment size is set to ��� bytes� This is the common segment size used in most current TCP implementa�
tions� Larger segment sizes have been reported to produce higher TCP throughputs� The e�ect of segment size is a
topic of further study� For the LAN con�gurations
 the TCP maximum window size is limited by a receiver window
of �K bytes� This is the default value speci�ed for TCP implementations� For WAN con�gurations
 a window of
�K bytes is not su�cient to achieve ���� utilization� We thus use the window scaling option to specify a maximum
window size of ������ Bytes� This window is su�cient to provide full utilization with each TCP source�

All link bandwidths are ������ Mbps
 and Peak Cell Rate at the ATM layer is ������ Mbps� The duration of the
simulation is �� seconds for LANs and �� seconds for WANs� This allows enough round trips for the simulation to
give stable results�

The con�gurations for satellite networks are discussed in Section ��
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Figure �� The N source TCP con�guration


�� Performance Metrics

The performance of the simulation is measured at the TCP layer by the E�ciency and Fairness as de�ned below�

E�ciency � �Sum of TCP throughputs���Maximum possible TCP throughput�

TCP throughput is measured at the destination TCP layer as the total number of bytes delivered to the application
divided by the simulation time� This is divided by the maximum possible throughput attainable by TCP� With ���
bytes of TCP data in each segment
 �� bytes of TCP header
 �� bytes of IP header
 � bytes of LLC header
 and �
bytes of AAL� trailer are added� This results in a net possible throughput of ����� of the ATM layer data rate �
����� Mbps on a ������ Mbps link�

Fairness Index � ��xi�
�� �n ��x�

i
�

Where xi � throughput of the ith TCP source
 and n is the number of TCP sources


�� Simulation Results

We performed simulations for the LAN and WAN con�gurations for three drop policies � tail drop
 Early Packet
Discard and Selective Drop� For LANs
 we used bu�er sizes of ���� and ���� cells� These are representative of the
typical bu�er sizes in current switches� For WANs
 we chose bu�er sizes of approximately one and three times the
bandwidth � round trip delay product� Tables � and � show the e�ciency and fairness values of SACK TCP with
various UBR� drop policies� Several observations can be made from these tables�

� For most cases
 for a given drop policy
 SACK TCP provides higher e�ciency than either the corre�
sponding drop policy in vanilla or Reno TCP� This con�rms the intuition provided by the analysis of
SACK that SACK recovers at least as fast as slow start when multiple packets are lost� In fact
 for most cases

SACK recovers faster than both fast retransmit�recovery and slow start algorithms�

� For LANs	 the eect of drop policies is very important and can dominate the eect of SACK�
For UBR with tail drop
 SACK provides a signi�cant improvement over Vanilla and Reno TCPs� However
 as
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Table �� SACK TCP over UBR� � E�ciency

Con�g� Number of Bu�er UBR EPD Selective
uration Sources �cells� Drop
LAN � ���� ���� ���� ���
LAN � ���� ���� ���� ����
LAN �� ���� ���� ���� ����
LAN �� ���� ���� ��� ����

SACK Column Average ���� ���� ����
Vanilla TCP Average ��� ���� ���
Reno TCP Average ���� ���� ����
WAN � ����� ���� ���� ����
WAN � ����� ���� ���� ����
WAN �� ����� ���� ���� ����
WAN �� ����� ���� ���� ����

SACK Column Average ��� ���� ����
Vanilla TCP Average ���� ��� ����
Reno TCP Average ���� ���� ����

the drop policies get more sophisticated
 the e�ect of TCP congestion mechanism is less pronounced� This is
because
 the typical LAN switch bu�er sizes are small compared to the default TCP maximum window of �K
bytes
 and so bu�er management becomes a very important factor� Moreover
 the degraded performance of
SACK in few cases can be attributed to excessive timeout due to the retransmitted packets being lost� In this
case SACK loses several round trips in retransmitting parts of the lost data and then times out� After timeout

much of the data is transmitted again
 and this results in wasted throughput� This result reinforces the need
for a good drop policy for TCP over UBR�

� The throughput improvement provided by SACK is more signi�cant for wide area networks�
When propagation delay is large
 a timeout results in the loss of a signi�cant amount of time during slow
start from a window of one segment� With Reno TCP �with fast retransmit and recovery�
 performance is
further degraded �for multiple packet losses� because timeout occurs at a much lower window than vanilla
TCP� With SACK TCP
 a timeout is avoided at many times
 and recovery is complete within a short number
of roundtrips� Even if timeout occurs
 the recovery is as fast as slow start but a little time may be lost in the
earlier retransmission�

� The performance of SACK TCP can be improved by intelligent drop policies like EPD and
Selective drop� This is consistent with our earlier results in ���� Thus
 we recommend that intelligent drop
policies be used in UBR service�

� The fairness values for selective drop are comparable to the values with the other TCP versions�
Thus
 SACK TCP does not hurt the fairness in TCP connections with an intelligent drop policy like selective
drop� The fairness of tail drop and EPD are sometimes a little lower for SACK TCP� This is again because
retransmitted packets are lost and some connections time out� Connections which do not time out do not have
to go through slow start
 and thus can utilize more of the link capacity� The fairness among a set of hybrid
TCP connections is a topic of further study�

	 E
ects of Satellite Delays on TCP over UBR�

Since TCP congestion control is inherently limited by the round trip time
 long delay paths have signi�cant e�ects on
the performance of TCP over ATM� A large delay�bandwidth link must be utilized e�ciently to be cost e�ective� This
section discusses some of the issues that arise in the congestion control of large delay�bandwidth links� Simulation
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Table �� SACK TCP over UBR� � Fairness

Con�g� Number of Bu�er UBR EPD Selective
uration Sources �cells� Drop
LAN � ���� ���� ���� ����
LAN � ���� ���� ���� ����
LAN �� ���� ���� ���� ����
LAN �� ���� ��� ���� ����

SACK Column Average ��� ��� ����
Vanilla TCP Average ���� ���� ����
Reno TCP Average ���� ���� ����
WAN � ����� ���� ���� ����
WAN � ����� ���� ��� ����
WAN �� ����� ���� ���� ����
WAN �� ����� ���� ���� ����

Column Average ���� ���� ����
Vanilla TCP Average ���� ���� ���
Reno TCP Average ���� ���� ����

results of TCP over UBR� with satellite delays are also presented� Related results in TCP performance over satellite
are available in �����

��� Window Scale Factor

The default TCP maximum window size is ����� bytes� For a ������ Mbps ATM satellite link �with a propagation
RTT of about ��� ms�
 a congestion window of about ���M bytes is needed to �ll the whole pipe� As a result
 the
TCP window scale factor must be used to provide high link utilization� In our simulations
 we use a receiver window
of ���� and a window scale factor of � to achieve the desired window size�

��� Large Congestion Window and the congestion avoidance phase

During the congestion avoidance phase
 CWND is incremented by � segment every RTT� Most TCP implementa�
tions follow the recommendations in ����
 and increment by CWND by ��CWND segments for each ACK received
during the congestion avoidance� Since CWND is maintained in bytes
 this increment translates to an increment of
MSS�MSS�CWND bytes on the receipt of each new ACK� All operations are done on integers
 and this expression
avoids the need for 	oating point calculations� However
 in the case of large delay�bandwidth paths where the window
scale factor is used
 MSS�MSS may be less than CWND� For example
 with MSS � ��� bytes
 MSS�MSS � ����

and when CWND is larger than this value
 the expression MSS�MSS�CWND yields zero� As a result
 CWND is
never increases during the congestion avoidance phase�

There are several solutions to this problem� The most intuitive is to use 	oating point calculations� This in�
creases the processing overhead of the TCP layer and is thus undesirable� A second option is to not increment
CWND for each ACK
 but to wait for N ACKs such that N�MSS�MSS � CWND and then increment CWND by
N�MSS�MSS�CWND� We call this the ACK counting option�

Another option would be to increase MSS to a larger value so that MSS�MSS would be larger than CWND at all
times� The MSS size of the connection is limited by the smallest MTU of the connection� Most future TCPs are
expected to use Path�MTU discovery to �nd out the largest possible MSS that can be used� This value of MSS may or
may not be su�cient to ensure the correct functioning of congestion avoidance without ACK counting� Moreover
 if
TCP is running over a connectionless network layer like IP
 the MTU may change during the lifetime of a connection
and segments may be fragmented� In a cell based network like ATM
 TCP could used arbitrary sized segments
without worrying about fragmentation� The value of MSS can also have an e�ect on the TCP througput
 and larger
MSS values can produce higher throughput� The e�ect of MSS on TCP over satellite is a topic of current research�
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Table �� TCP over UBR� with Satellite Delays� E�ciency

TCP Number of Bu�er UBR EPD Selective
Sources �cells� Drop

SACK � ������ ���� ��� ����
SACK � ������ ���� ���� ����
Reno � ������ ��� ���� ����
Reno � ������ ���� ���� ����

Vanilla � ������ ���� ���� ����
Vanilla � ������ ���� ���� ����

Table � SACK TCP over UBR� with Satellite Delays� Fairness

Con�g� Number of Bu�er UBR EPD Selective
uration Sources �cells� Drop
SACK � ������ ���� ���� ���
SACK � ������ ���� ���� ����
Reno � ������ ���� ���� ����
Reno � ������ ���� ���� ����

Vanilla � ������ ���� ���� ����
Vanilla � ������ ���� ���� ����

� Simulation Results of TCP over UBR� in Satellite networks

The satellite simulation model is very similar to the model described in section ���� The di�erences are listed below�

� The link between the two switches in Figure � is now a satellite link with a propagation delay of ��� ms� The
links between the TCP sources and the switches are � km long� This results in a round trip propagation delay
of over ��� ms�

� The maximum value of the TCP receiver window is now ������ bytes� This window size is su�cient to �ll
the ������ Mbps pipe�

� The TCP maximum segment size is ���� bytes� A larger value is used because most TCP connections over
ATM with satellite delays are expected to use larger segment sizes�

� The bu�er sizes used in the switch are ������ cells and ������ cells� These bu�er sizes re	ect bu�ers of about
� RTT and � RTTs respectively�

� The duration of simulation is � seconds�

Tables � and  show the fairness and e�ciency values for Satellite TCP over UBR� with � TCP sources and bu�er
sizes of ������ and ������ cells� Several observations can be made from the tables�

� Selective acknowledgements signi�cantly improve the performance of TCP over UBR� over
satellite networks� The e�ciency and fairness values are typically higher for SACK than for Reno and vanilla
TCP� This is because SACK often prevents the need for a timeout and can recover quickly from multiple packet
losses�

� Fast retransmit and recovery is detrimental to the performance of TCP over large delay�bandwidth
links� The e�ciency numbers for Reno TCP in table � are much lower than those of either SACK or Vanilla
TCP� This reinforces the WAN results in table � for Reno TCP� Both the tables are also consistent with anal�
ysis in Figure �
 and show that fast retransmit and recovery cannot recover from multiple losses in the same
window�
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� Intelligent drop policies have little eect on the performance of TCP over UBR satellite networks�
Again
 these results are consistent with the WAN results in tables � and �� The e�ect of intelligent drop policies
is most signi�cant in LANs
 and the e�ect decreases in WANs and satellite networks� This is because LAN
bu�er sizes ����� to ���� cells� are much smaller compared to the default TCP maximum window size of �����
bytes� For WANs and satellite networks
 the switch bu�er sizes and the TCP maximum congestion window
sizes are both of the order of the round trip delays� As a result
 e�cient bu�er management becomes more
important for LANs than WANs and satellite networks�

� Summary

This paper describes the performance of SACK TCP over the ATM UBR service category� SACK TCP is seen to
improve the performance of TCP over UBR� UBR� drop policies are also essential to improving the performance
of TCP over UBR� As a result
 TCP performance over UBR can be improved by either improving TCP using
selective acknowledgements
 or by introducing intelligent bu�er management policies at the switches� E�cient
burrer management has a more signi�cant in	uence on LANs because of the limited bu�er sizes in LAN switches
compared to the TCP maximum window size� In WANs and satellite networks
 the drop policies have a smaller
impact because both the switch bu�er sizes and the TCP windows are of the order of the bandwidth�delay product
of the network�
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