95-0972R1 Parameter Values for Satellite Links

Raj Jain, Shiv Kalyanaraman, Sonia Fahmy, Fang Lu The Ohio State University

Saragur M. Srinidhi

Sterling Software and NASA Lewis Research Center

Raj Jain is now at Washington University in Saint Louis, jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u>

The Ohio State University

Raj Jain

Effect of Xrm

- XRM limits the number of cells lost if the link is broken
- Source Rule (6):
 If you not received feedback from the network after Xrm×Nrm cells, reduce your ACR:
 - $ACR = max\{MCR, ACR ACR \times XDF\}$

Effect of XDF

 After Xrm×Nrm cells: ACR = ACR(1 - XDF)
 After Xrm(1 + Nrm) cells: ACR = ACR(1 - XDF)²
 After Xrm(k + Nrm) cells: ACR = ACR(1 - XDF)^k

Design Principles

- Abnormal operations should not be handled at extreme cost to normal operation
- ⇒ While we don't want to lose too many cells if the link breaks, we do not want to get 50% throughput if the link is operating.
- □ If the network is operating optimally, the control scheme should not move it to suboptimal ⇒ If VCs is at the optimal rate, leave it alone or minimize oscillations.

The Ohio State University

Simulation Parameters

- Source: Parameters selected to maximize ACR Nrm = 32
 - $ICR = Optimal = 0.9 \times PCR / Number of VCs$
 - AIR = PCR/Nrm \Rightarrow ACR is not limited by AIR RDF= 256 cells

Xrm = 32, 256, ... XDF = 1/16

- $TDFF = 0 \Rightarrow ACR$ does not go down due to TOF
- Traffic: Bidirectional, Infinite sources

Switch:

Target Utilization = 90%

Averaging interval = $min\{30 \text{ cells}, 200 \mu s\}$

All links 155 Mbps, ICR = 0.9 × PCR
 Goal: If the scheme has problem with single-source, it will have problems with more complex configurations

The Ohio State University

Raj Jain

Simulation Results

- □ The queue lengths are small (no bottleneck)
- The rates oscillate between very low and very high even though the network feedback is consistently at ACR = 139 Mbps.
- Average throughput:
 0 for t=(0,275ms),
 32 Mbps for t=(275ms, 825ms),
 45 Mbps for t=(825ms, 1200ms)

Simulation Results (Cont)

- □ The results do not change much with XDF
- Percent throughput even lower for higher speed (622 Mbps) links

□ Xrm = 256 (maximum allowed) \Rightarrow 8 times more cells in flight

Increasing Nrm is not recommended as it reduces sensitivity at lower rates Response time = max {feedback delay, Inter-RM cell time}

Required Xrm

For full throughput Xrm > RTTQ/(Nrm×ACR) Where RTTQ = Round Trip Time including Queueing \Box For 155 Mbps, Xrm \geq 6,144 \Box For 622 Mbps, Xrm \geq 24,576 \Box For two satellite hops: Xrm \geq 49,152 \Box For *n* satellite hops: Xrm \geq 24,576*n* \Rightarrow Need 32 bits for Xrm

The Ohio State University

The Ohio State University

 In section 5.10.3.1 Parameter definitions and usage, replace
 "XRM is a 8 bit integer" with
 "XRM is a 32-bit integer"

The Ohio State University

Raj Jain