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Virtual Source / VirtualVirtual Source / Virtual
Destination (VS / VD)Destination (VS / VD)

q Segments the end-to-end ABR control loop.

q Coupling between loops is implementation specific.

q VS/VD can help in buffer management across the
network.

q ABR switches separated by non-ATM network
could also implement VS/VD.
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GoalsGoals
q Describe a VS/VD switch architecture.

q Discuss issues in designing rate

allocation schemes for VS/VD switches.

q Present a per-VC rate allocation scheme for VS/VD.

q Discuss how VS/VD can help in buffer management
across the network.
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VS/VD SwitchVS/VD Switch
ArchitectureArchitecture
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VS/VD SwitchVS/VD Switch
ArchitectureArchitecture

q Each switch port :
m Class queue for each service category.
(optional)
m Per-VC queues drain into class queue or link

q When a cell is received :
m Data cell : forwarded to destination port (VS).
m FRM cell : turned around as BRM (VD).
m BRM cell : ER is noted (VS).

q VS sends data + FRM cells at ACR to class queue.
q A scheduler services the per-VC queues.
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A Simple VS/VD ModelA Simple VS/VD Model

Node i Ri

sij
rij

ERij
externalERij

internalERij
feedback

qi
qij

q Internal Service Rate = f(External/Downstream
Feedback, Local congestion)

q Local Congestion = f(Qi);  Qi = qi + Σ qij

q Upstream feedback = Internal service rate

q Example: Downstream = 100 Mbps,
Internal =90 Mbps = Upstream Feedback
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Simple VS/VD ModelSimple VS/VD Model

q Desired input rate to class queue is also fed back to
the upstream switch.

q Problem:

m Transient per-VC queues cannot drain.
Input rate sij = Output rate rij

m Queues that build up during open loop phase do not
drain.



Raj JainThe Ohio State University

8

Ri

sij

rij

ERij
externalERij

internalERij
feedback

qi

qij

Correct VS/VD ModelCorrect VS/VD Model

q Internal Service Rate = f(External/Downstream
Feedback, Switch algorithm using qi)

q ACRij = f(Internal service rate, end system rules)

q Upstream feedback =f(qij)ACRij

q Example: Downstream = 100, Service =90, ACR=80,
Upstream feedback=70 Mbps
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Per-VC ERICA+Per-VC ERICA+
q BRM received :

m ERij
external := ER in RM cell

q FRM received :

m ER in RM := ERij
feedback

q At the end of each averaging interval :

m ERij
internal

:= Min{ Max (rij/Overload, g(qi)Ri/N), ERij
external}

m Output rate
ACRij = rij := fn{ERij

internal, end system rules}

m ERij
feedback := g(qij)rij
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Simulation ModelSimulation Model

Switch 
1

Switch 
2

Switch 
3

D1

D5

S1

S5

275 or 50 ms 5 ms 5 µs5 ms

45 Mbps155 Mbps155 Mbps 155 Mbps

Link 2Link 1

VS/VD Loops
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ParametersParameters
q VS/VD and Non-VS/VD configurations.

q First hop = Satellite hop with 1 way delay:

m LEO = 50 ms

m GEO = 275 ms

q Link 2 = 45 Mbps (Bottleneck Link).

q All other links = 155.52 Mbps (149.76 with SONET)

q Persistent ABR sources: ICR = 30 Mbps

q Persistent TCP sources: Timer granularity = 500 ms.
At 45 Mbps, 100 ms causes timeouts in GEO.
Known problem with TCP Std deviation measurement.
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ERICA+ Non-VS/VDERICA+ Non-VS/VD
LEOLEO
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ERICA+ Non-VS/VDERICA+ Non-VS/VD
GEOGEO
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ERICA+ Non-VS/VDERICA+ Non-VS/VD
GEOGEO
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ERICA+ VS/VD LEOERICA+ VS/VD LEO
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ERICA+ VS/VD LEOERICA+ VS/VD LEO
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VS/VD GEO Sw1 QueueVS/VD GEO Sw1 Queue
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ERICA+ VS/VD GEOERICA+ VS/VD GEO
TCPTCP
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ERICA+ VS/VD GEOERICA+ VS/VD GEO
TCPTCP
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VS/VD Sw. Feedback
delay

B/w
diff.

Max
Exp. Q
(cells)

Max
Obs. Q
(cells)

OFF Sw1 120 0 0 0
OFF Sw2 120 100 3*28 K 30 K
ON Sw1 100 100 3*25 K 30 K
ON Sw2 10 100 3*2.4 K 3 K
OFF Sw1 570 0 0 0
OFF Sw2 570 100 3*135 K 140 K
ON Sw1 550 100 3*130 K 140 K
ON Sw2 10 100 3*2.4 K 3 K

Simulation ResultsSimulation Results
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ObservationsObservations
q Without VS/VD:

m Single control loop for the entire connection.

m All queues are in the bottleneck switch.

m Buffer requirements for terrestrial switch are
proportional to satellite propagation delay.

q With VS/VD:

m Control loop broken at each switch.

m Queues remain at the switch between the satellite
and the terrestrial loop (satellite switch).

m Terrestrial switch only requires small buffers.
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SummarySummary

q VS/VD switch architecture:

m Per-VC queues drain at an ACR based only on the
external congestion and class Q

m Feedback to upstream queue must include external
congestion, class Q, and per-VC Q.

m Each queue must monitor its input and output rate.
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Summary (Cont)Summary (Cont)

q With correct implementation of VS/VD:
Maximum queue at each switch
< Bandwidth delay product of the previous loop
⇒ Can help isolate long-delay hops from short-delay
hops.

q Workgroup switches on satellite paths will not need
buffering proportional to round-trip even if they are
the bottleneck.

q Motion: Add sample VS/VD scheme to baseline text

Switch 
1

Switch 
2

S5
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Future WorkFuture Work
q More complex configurations.

q Presence of VBR background.

q Analysis of complexity of VS/VD switch.

q Scheduling policies for per-VC and class queues.
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MotionMotion
q Add the following two paragraphs to

I.5.4 of the baseline text.
I.5.4 A Sample Explicit Rate VS/VD Switch Algorithm

One simple method to implement VS/VD is to have a separate queue
(per-VC queue) for each VC. A server at the head of each of these
queues monitors the input rate of the queue, provides feedback to the
upstream queue, and controls the output rate of the queue based on the
feedback from the corresponding downstream server. When providing
feedback, each server only allocates up to the rate at which it is
allowed to output (ACR). However, if queues are large, the server may
allocate only a part of its ACR to the previous hop so that its queues
can drain quickly. The main features and options of the algorithm are
similar to the ERICA+ algorithm. ERICA+ is an extension of the
ERICA algorithm, and uses queue length to dynamically set the target
ABR capacity.
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Motion (Motion (contdcontd.).)

The basic rate allocation algorithm consists of the following steps at
the end of every averaging interval. The port overload is calculated as
the ratio of the total measured service rate of the per-VC queues and
the target ABR capacity. The fair share term for VCs is calculated as
the ratio of the target ABR capacity to the number of active ABR
VC. VCshare is calculated for each VC as the ratio of its measured
service rate to the overload. The ER for each VC is calculated as ER
= Min(Max(Fair Share, VC share), ER from downstream node). The
ACR at which the VC's queue drains is determined from this ER as
well as the source-end-system rules for the VS. The feedback to the
previous hop for the VC is calculated as a fraction (based on the VC's
queue length) of the calculated ACR.


