97-0423

Selective Acknowledgements and **UBR+** Drop Policies to Improve **TCP/UBR** Performance over **Terrestrial and Satellite Networks** Rohit Goyal, Raj Jain, Shiv Kalyanaraman, Sonia Fahmy, Bobby Vandalore, Xiangrong Cai The Ohio State University Seong-Cheol Kim, Samsung Electronics Co. Ltd. Sastri Kota, Lockheed Martin Telecom/Astrolink

Raj Jain is now at Washington University in Saint Louis, jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/

The Ohio State University

- Selective Acknowledgements
- □ A recent modification to FRR (New Reno)
- □ When are these useful? How much?
- LAN, WAN, Satellite Simulation Results
- □ A Problem in TCP Slow Start Implementations

Policies								
	End-System Policies							
			No	FRR	New	SACK +		
es			FRR		Reno	New		
						Reno		
	No							
	EPD							
lici	EPD	Plain						
$\mathbf{P_0}$		EPD						
tch		Selective						
Swi		Drop						
		Fair Buffer						
		Allocation						
The	The Ohio State University Raj Jain							

Slow Start

- Congestion Window (CWND) and Receiver Window
- Slow Start Threshold SSThresh = 0.5 × Congestion Window
- Exponential increase (Slow Start)
- □ Linear increase (Congestion Avoidance)
- Horizontal line = Timer granularity of 100 to 500 ms

Fast Retransmit and Recovery

□ Ideas:

Don't have to wait for timeout on a loss

□ Don't reduce on single loss due to error

 $\Box \text{ Duplicate acks} \Rightarrow \text{Loss}$

- On three duplicate acks
 - \square Set SSThresh to $0.5 \times CWND$
 - \Rightarrow Linear increase from now on
 - \Box Reduce CWND to 0.5 × CWND + 3 (instead of 1)
- For each subsequent duplicate ack, inflate CWND by 1 and send a packet if permitted
- □ Problem with FRR:

Cannot recover from bursty (3+) losses

The Ohio State University

New Reno

- Janey Hoe's MS Thesis from MIT Published in SIGCOMM'96
- ❑ Solution: Determine the end-of a burst loss
 Remember the highest segment sent (RECOVER)
 Ack < RECOVER ⇒ Partial Ack
 Ack ≥ RECOVER ⇒ New Ack
- □ New Ack \Rightarrow Linear increase from $0.5 \times CWND$
- □ Partial Ack ⇒ Retransmit next packet, let window inflate
- □ Recovers from N losses in N round trips

The Ohio State University

Selective Ack

- **RFC 2018, October 1996**
- Receivers can indicate missing segments
- **Example:**
 - Using Bytes: Ack 500, SACK 1000-1500, 2000-2500
 - \Rightarrow Rcvd segment 1, lost 2, rcvd 3, lost 4, rcvd 5
- On a timeout, ignore all SACK info
- □ SACK negotiated at connection setup
- Used on all duplicate acks

0-499	500-999	1000-1499	1500-1999	2000-2499
The Ohio State Univer	sity Lost		Lost	Raj Jain

SACK with New Reno

- On 3 duplicate acks, retransmit the missing segment
- Then if permitted, retransmit the holes before new segments
- □ PIPE represents number of bytes on the path
- When FRR triggers, PIPE is set to CWND, then CWND is reduced to half
- □ On every duplicate ack, PIPE is reduced by 1
- Send new or retransmitted packet only if PIPE < CWND</p>

The Ohio State University

PIPE is incremented by 1 when a segment is sent
 PIPE is decremented by 2 when a "partial" ack is received

Analytical Result

- SACK TCP can recover in one RTT from 1/4th window loss (Worst case)
- □ SACK TCP can recover from 1/nth window loss in $\lceil \log_2[n/(n-2)] \rceil$ RTTs, n > 2
 - \Rightarrow In *k* RTTs, recover from $2^{k+1}/(2^k 1)$ th of window
 - \Rightarrow 3/8th in 2 RTTs, 7/16th in 3 RTTs,
 - 15/32th in 4 RTTs, ...
 - \Rightarrow Cannot recover from half or more window loss
- □ See contribution for derivation
- □ Assumption: Retransmitted segements are not lost.

The Ohio State University

Past Results on TCP over UBR+

- □ Need buffers = Σ Windows
- Poor performance with limited buffers
- **EPD** improves efficiency but not fairness
- In high delay-bandwidth paths, too many packets are lost
 - \Rightarrow Effect of EPD reduces
 - \Rightarrow EPD has little effect in satellite networks.

Past Results (Cont)

- Selective drop (only above-average users punished) improves fairness and even efficiency.
- Fair buffer allocation (more sophisticated selective drop) improves fairness and efficiency more.
- FRR improves performance over LANs but <u>degrades</u> performance over WANs and Satellites

- □ N identical persistent TCP sources
- □ Link Delay: LAN: 5 µs, WAN: 5 ms.
- $\Box Link Capacity = PCR = 155.52 Mbps$
- Unidirectional traffic

The Ohio State University

TCP Parameters

- MSS = 512 Bytes (LANs and WANs), 9180 (Satellites)
- Window = 64 K (LANs) 600,000 (WANs) 34000 × 8 (Satellites)
- Buffer sizes = 1k and 3k cells (LANs)
 1 to 3 times RTT (WANs and Satellites)
- □ No TCP delay ack timer
- \Box All processing delay, delay variation = 0
- **TCP** timer granularity = 100 ms

Performance Metrics

The Ohio State University

SACK TCP: Efficiency							
Config-	# of	Buffer	UBR	EPD	Selective		
uration	Sources	(cells)			Drop		
LAN	5	1000	0.76	0.85	0.94		
LAN	5	3000	0.98	0.97	0.98		
LAN	15	1000	0.57	0.78	0.91		
LAN	15	3000	0.86	0.94	0.97		
SACK			0.79	0.89	0.95		
Vanilla TCP			0.34	0.67	0.84		
Reno TCP			0.69	0.97	0.97		
WAN	5	12000	0.90	0.88	0.95		
WAN	5	36000	0.97	0.99	1.00		
WAN	15	12000	0.93	0.80	0.88		
WAN	15	36000	0.95	0.95	0.98		
SACK			0.94	0.91	0.95		
Vanilla TCP			0.91	0.9	0.91		
Reno TCP			0.78	0.86	0.81		
The Ohio State University Raj Jain							

SACK TCP: Fairness							
Config-	# of	Buffer	UBR	EPD	Selective		
uration	Sources	(cells)			Drop		
LAN	5	1000	0.22	0.88	0.98		
LAN	5	3000	0.92	0.97	0.96		
LAN	15	1000	0.29	0.63	0.95		
LAN	15	3000	0.74	0.88	0.98		
SACK			0.54	0.84	0.97		
Vanilla TCP			0.69	0.69	0.92		
Reno TCP			0.71	0.98	0.99		
WAN	5	12000	0.96	0.98	0.95		
WAN	5	36000	1.00	0.94	0.99		
WAN	15	12000	0.99	0.99	0.99		
WAN	15	36000	0.98	0.98	0.96		
SACK			0.98	0.97	0.97		
Vanilla TCP			0.76	0.95	0.94		
Reno TCP			0.90	0.97	0.99		
he Ohio State Universi	ty				Raj Ja		

Simulation Results

- In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.
- Previously retransmitted holes may have to be retransmitted on a timeout
 - \Rightarrow SACK can hurt under extreme congestion.

Simulation Results (Cont)

- SACK is more helpful in WANs (Whereas FRR hurts in WANs) due to multiple losses
- Switch-based improvements are helpful even with SACK
- Fairness depends largely on the drop policy and not so much on end-system policies

A Problem in Slow Start Implementations

- Linear Increase in Segments: CWND/MSS = CWND/MSS + MSS/CWND
- □ In Bytes: CWND = CWND + MSS*MSS/CWND
- □ All computations are done in integer
- If CWND is large, MSS*MSS/CWND is zero and CWND does not change. CWND stays at 512*512 or 256 kB.

Solutions

- Solution 1: Increment CWND after N acks (N > 1) CWND = CWND + N*MSS*MSS/CWND
- □ Solution 2: Use larger MSS on Satellite links such that MSS*MSS > CWND. MSS ≥ Path MTU.
- **Solution 3**: Use floating point
- Recommendation: Use solution 1. It works for all MSSs.

Satellite Networks: Efficiency

Config-	# of	Buffer	UBR	EPD	Selective
uration	Sourc	(cells)			Drop
	es				
SACK	5	200000	0.86	0.6	0.72
SACK	5	600000	0.99	1.00	1.00
Reno	5	200000	0.84	0.12	0.12
Reno	5	600000	0.30	0.19	0.22
Vanilla	5	200000	0.70	0.73	0.73
Vanilla	5	600000	0.88	0.81	0.82

Satellite Networks: Fairness

Config-	# of	Buffer (cells)	UBR	EPD	Selective
uration	Sourc				Drop
	es				
SACK	5	200000	1.00	0.83	0.94
SACK	5	600000	1.00	1.00	1.00
Reno	5	200000	0.96	0.97	0.97
Reno	5	600000	1.00	1.00	1.00
Vanilla	5	200000	1.00	0.87	0.89
Vanilla	5	600000	1.00	1.00	1.00

Simulation Results on Satellites

- SACK helps significantly
- □ FRR hurts badly
- Switch-based improvements have relatively less impact than end-system improvements
- □ Fairness is not affected by SACK

- In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK).
- In WANs and satellite networks, end-system improvements have more impact than switch-based improvements
- □ FRR hurts in WANs and satellite networks.
- Fairness depends upon the switch drop policies and not on endsystem policies
- Unless implemented properly, congestion window may get stuck at 256 kB
 The Ohio State University
 R