96-0177R1 TCP/IP over ABR [Was: TBE and TCP/IP Traffic]

Raj Jain, Shiv Kalyanaraman, Rohit Goyal, Sonia Fahmy, Fang Lu

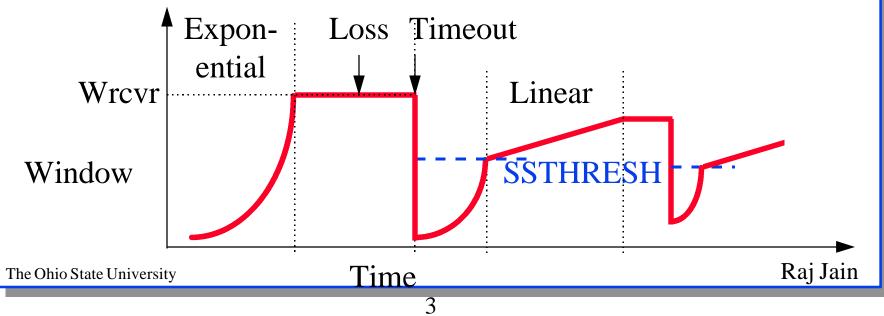
The Ohio State University

Saragur M. Srinidhi

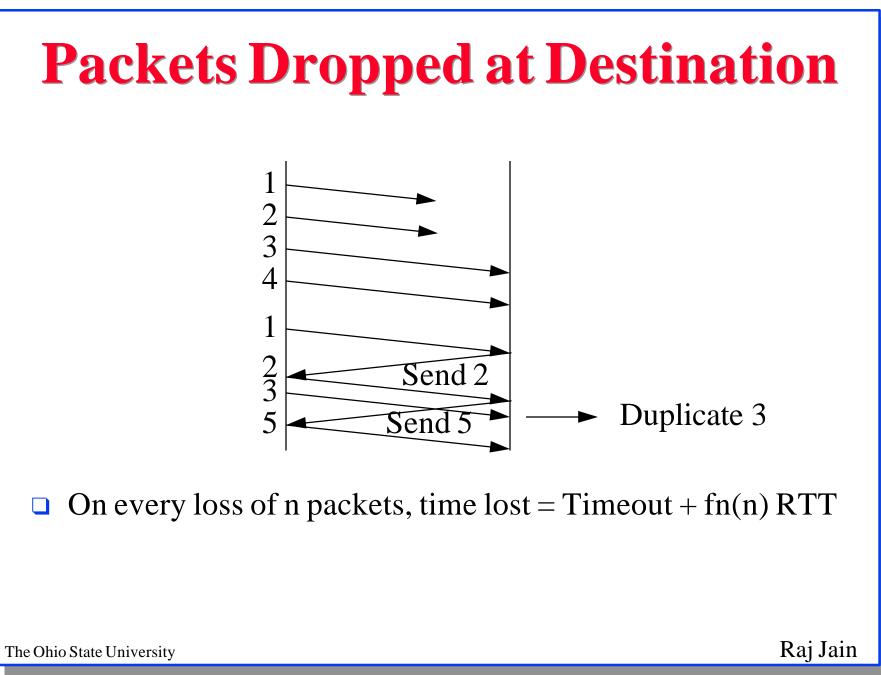
Sterling Software and NASA Lewis Research Center

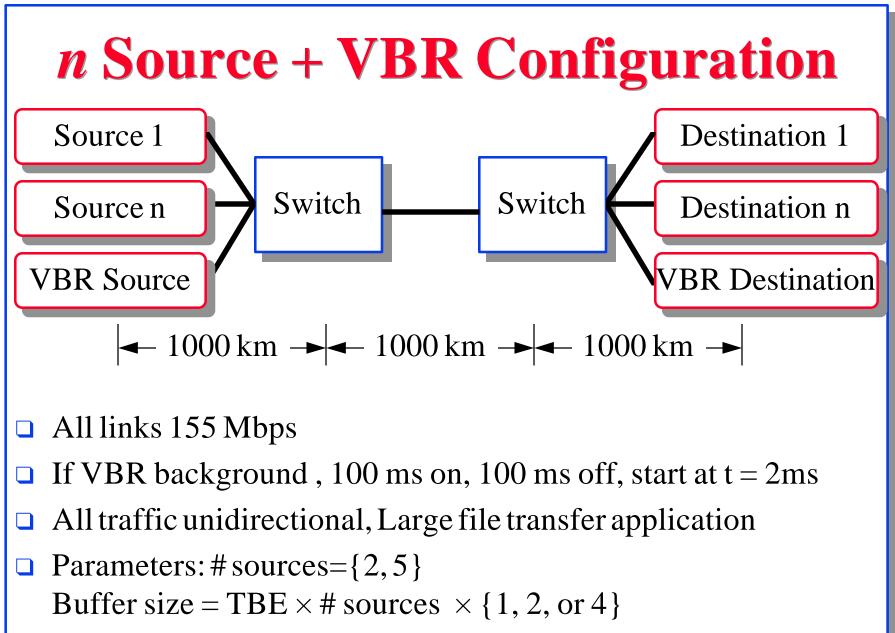
Raj Jain is now at Washington University in Saint Louis, jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u>

The Ohio State University


Raj Jain

- TCP/IP's load control mechanisms
 Slow-start, Timeout, Retransmissions
- Simulation Results
 ABR + Finite buffers + 100 ms granularity + WAN
- **Given States and Figure 5** Effect of TBE and finite buffers
- **Given States and Stat**


TCP/IP Slow Start

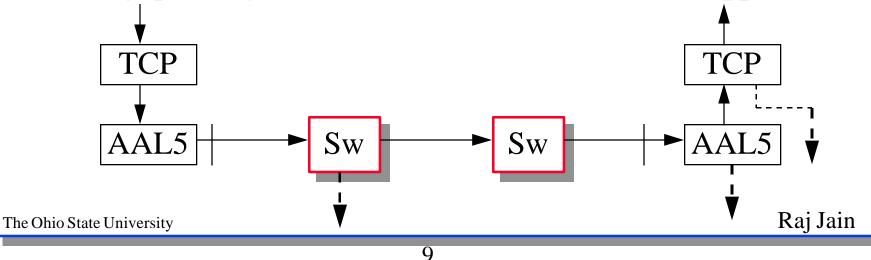

- □ Maximum Segment Size (MSS) = 512 bytes
- Congestion Window (CWND)
- $\Box Window W = Min \{Wrcvr, CWND\}$
- □ Slow-Start Threshold = max{2,min{CWND/2,Wrcvr}}
- Exponential until SSTHRESH: W = W+1 for every ack
- □ Linear afterwards: W = W + 1/W for every ack until Wrcvr

Timeout and Timer Granularity

- □ Remember segment # and Send_time
- □ Upon acknowledgment: RTT = Now Send_time
- □ Keep an exponential average of mean and std. dev. of RTT
- □ Retransmissions \Rightarrow Ignore the measured value Cumulative Ack \Rightarrow Use it as usual
- $\Box \text{ Timeout} = \text{Mean} + 4 \times \text{Std. Dev.}$
- Only one packet is timed
- All times are measured using a granularity of 100 ms (500 ms in Solaris and all BSD implementations)
- $\square RTT < 100 \text{ ms} \Rightarrow RTT = 100 \text{ ms}$
- Upon retransmission: Timeout = $2 \times$ Timeout until 128 ticks

The Ohio State University

Simulation Parameters


- Source: Parameters selected to maximize ACR TBE = 128, 512 CDF (XDF) = 0.5 ICR = 10 Mbps CRM (Xrm)= [TBE/Nrm] ADTF = 0.5 sec PCR = 155.52 Mbps, MCR= 0, RIF (AIR) = 1, Nrm = 32, Mrm = 2, RDF = 1/512, Trm =100ms, TCR = 10 c/s
- □ Traffic: TCP/IP with Infinite source application
- Switch: ERICA modified Target Utilization = 90% Averaging interval = min{100 cells, 1000 μs}

TCP/IP Parameters

- $\Box Maximum Segment Size = 512 bytes$
- \Box Timer granularity = 100 ms
- □ Fast retransmit/recovery not completely experimented
- □ Early packet drop (EPD) not yet experimented
- □ No TCP processing time
- □ Max window = 16×64 kB, One-way delay = 15 ms = 145 kB
- □ No ack delay timer

Performance Metrics

- Sequence numbers at the source, Congestion window
- ACR, Link utilization, Queue length in the switch
- □ Bytes sent = Sent once + Retransmitted
 - = Bytes delivered to application
 - + data bytes dropped in the switch + bytes in the path
 - + Partial packet bytes dropped at the destination AAL5
 - + duplicate packet bytes dropped at the destination TCP
- □ Throughput = Bytes delivered/Time, CLR = Cells dropped/sent

Infinite Buffers & Fixed Capacity

D Buffer size = 4096, TBE = 512

 $\Box CLR = 0$

□ Maximum TCP throughput = 103.32 Mbps

```
 Throughput = 155 Mbps
     × 0.9 for ERICA Target Utilization
     × 48/53 for ATM payload
     × 512/568 for protocol headers
     (20 TCP + 20 IP + 8 RFC1577 + 8 AAL5 = 56 bytes)
     × 31/32 for ABR RM cell overhead
     × 0.9 TCP window startup period
 Fair
```

```
• ABR Rate limited
```

The Ohio State University

Finite Buffers & Fixed Capacity

- $\Box \quad Buffer size = 2048, TBE = 512$
- **CLR** = 0.18%
- TCP throughput = 34.16 + 31.70 = 65.86 Mbps = 64% of Max
- 0.18% of CLR but 36% throughput loss
- □ Window limited
- **Time lost in retransmissions**
- □ With TCP, you don't loose cells but you loose time.

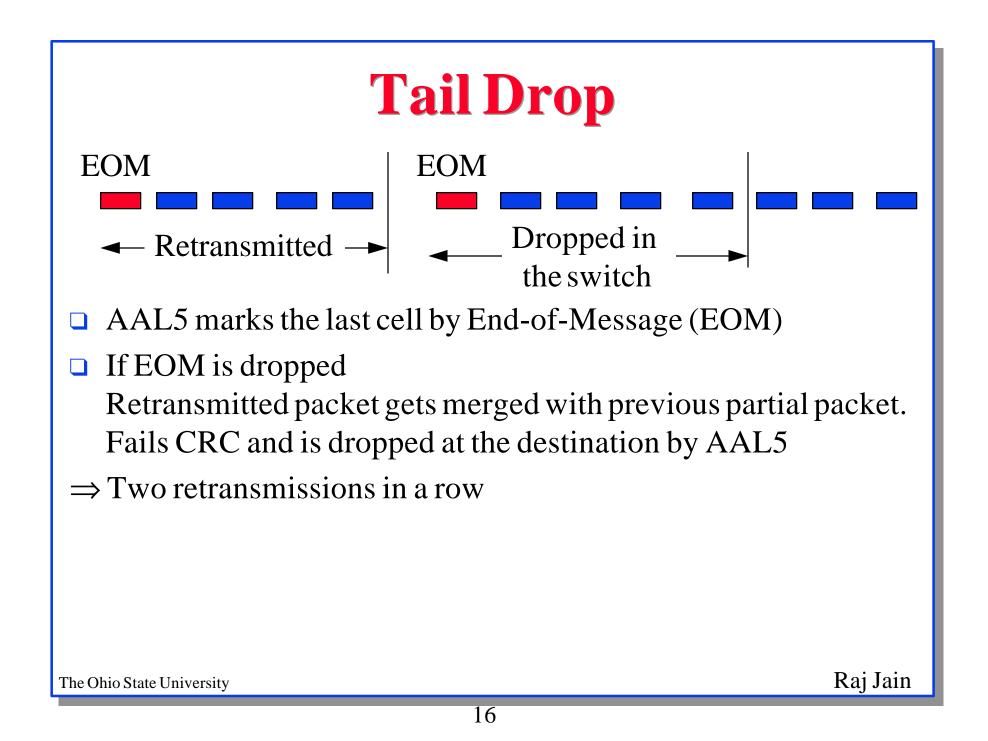
Simulation Results: Summary

# srcsTBEBufferT1T2T3T4T5Through% ofCSizeputMax	LR.
Size put Max	
2 128 256 3.1 3.1 6.2 10.6	1.2
2 128 1024 10.5 4.1 14.6 24.9	2.0
2 512 1024 5.7 5.9 11.6 19.8	2.7
2 512 2048 8.0 8.0 16.0 27.4	1.0
5 128 640 1.5 1.4 3.0 1.6 1.6 9.1 15.6	4.8
5 128 1280 2.7 2.4 2.6 2.5 2.6 12.8 21.8	1.0
5 512 2560 4.0 4.0 4.0 3.9 4.1 19.9 34.1	0.3
5 512 5720 11.7 11.8 11.6 11.8 11.6 58.4 100.0	0.0

- **CLR** has high variance
- CLR does not reflect performance. Higher CLR does not necessarily mean lower throughput
- **CLR** and throughput are one order of magnitude apart
- Bursty losses are less damaging than scattered losses The Ohio State University

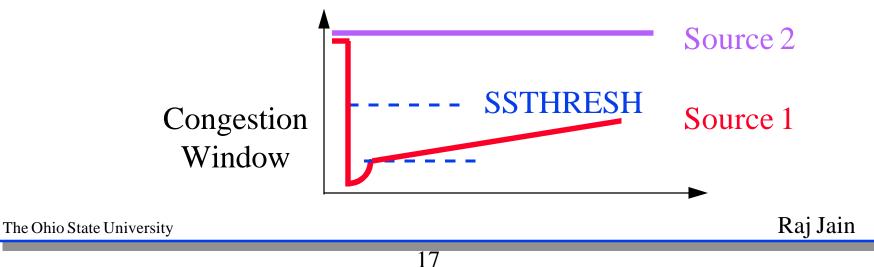
Raj Jain

Observations I


- TCP's slow-start does reduce network load Most of the queues are at the source Not much queue in the switch
- CLR in the switch is low
 But, throughput is also low
 - □ TCP does not use all the available bandwidth
 - □ Many packets are dropped at the destination
 - □ Much time is lost due to timer granularity
- Lower CLR does not mean higher throughput

Observations II

- $\Box \quad Larger \ buffer \ size \Rightarrow Higher \ throughput$
- □ Effect of buffers on CLR is mixed.
 Larger buffer ⇒ CLR may be lower
 or may be higher (if loss occurs at a higher window)
- □ TBE's effect on throughput is mixed
 Lower TBE ⇒ Rule 6 ⇒ Less CLR ⇒ Higher throughput
 Lower TBE ⇒ Rule 6 ⇒ Rate limited ⇒ Lower throughput
- Only very low values of TBE's produce different result.
- □ In general, TBE of 512 or higher has no effect in this configuration


Observations III


- As the number of sources is increased, generally the total throughput increases
- TCP sources are generally window limited.
 Five sources with small windows pump more data than two sources with small windows
- □ Interaction among: TBE, buffer size, and number of sources

Tail Drop (Cont)

- **Two retransmissions in a row**
 - \Box On 1st Retransmission: SSTHRESH = W/2; W = 1
 - \Box On 2nd Retransmission: SSTHRESH = 2, W = 1
 - \Rightarrow Window is increased linearly
 - \Rightarrow Very low throughput
 - ⇒Unfairness
- □ Intelligent Tail Drop: Do not drop EOM \Rightarrow Improved fairness

- $\Box TCP's slow-start + ABR's Load Control = Overcontrol$
- □ With TCP, you may not lose cells but you lose time \Rightarrow Lower CLR but also lower throughput
- □ Time lost depends upon timer granularity.
- □ Buffers help. TBE and number of sources interact.
- □ Indiscriminate cell drop may cause unnecessary retransmissions and unfairness ⇒ Try not to drop EOM cells The Ohio State University Raj Jain

Fast Retransmit and Recovery

□ Idea: Don't wait for time-outs. Duplicate Acks indicate loss.

Upon 3 duplicate acks, assume loss:

- $\Box Set SSTHRESH = max \{2, min \{CWND/2, Wrcvr\} \}$
- □ Retransmit one packet
- \Box Set CWND = SSTHRESH + 3
- \Box For every duplicate ack: CWND = CWND + 1
- At new ack: CWND = SSTHRESH This results in a sudden burst
- □ Reset duplicate ack count on piggybacked acks Intermingled duplicate and piggybacked acks \Rightarrow No action

Effect of Fast Retransmit

- Fast retransmit helps only if occasional losses Mild congestion or errors
- ❑ With n packet loss, SSTHRESH is reduced to half after each retransmission. Window enters the linear-increase zone even when the window is small ⇒ Low throughput.
- Even with fast retransmits, there are time-outs when the losses are bursty. These time-outs are more damaging than if there is no fast retransmit since SSTHRESH is low.

		Bursty Loss	Scattered Loss
Without Fast-Retransmit Fast- $$ \times	With Fast-Retransmit Fast-Recovery	×	\checkmark
	Without Fast-Retransmit Fast-		×
Recovery	Recovery		

The Ohio State University