95-1660R1 A Fix for Source End System Rule 5

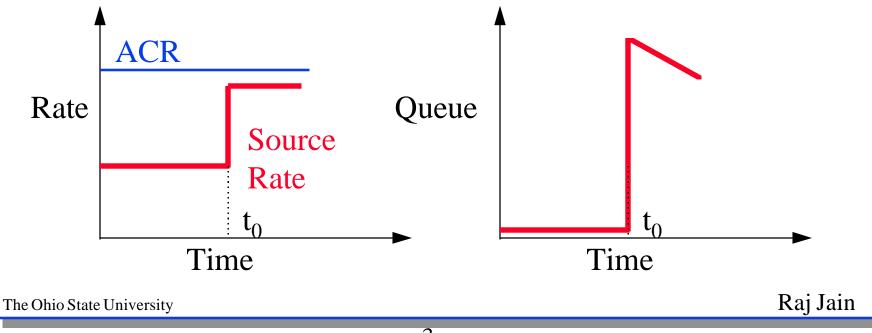
Raj Jain, Shiv Kalyanaraman, Rohit Goyal, Sonia Fahmy, Fang Lu

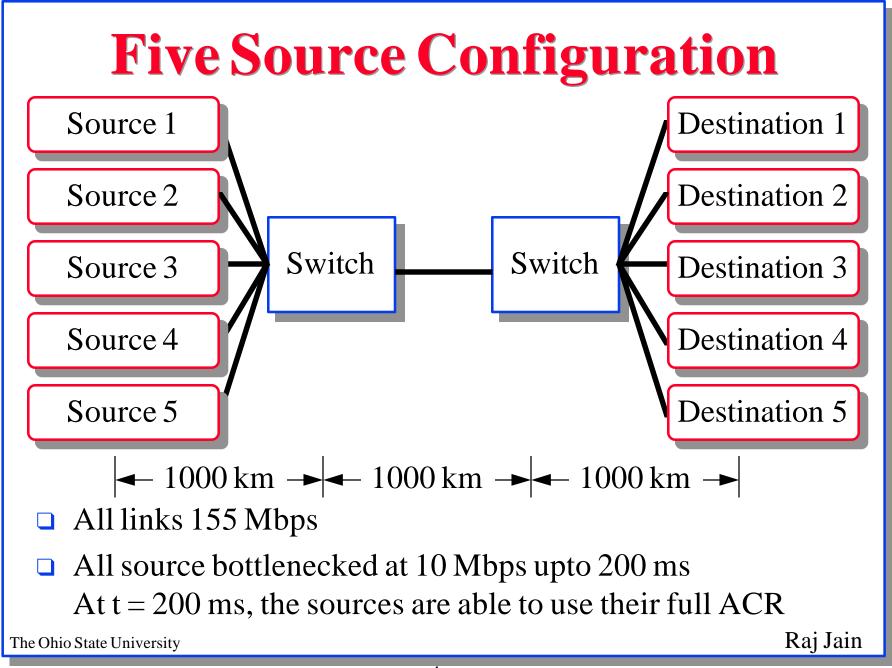
The Ohio State University

Saragur M. Srinidhi

Sterling Software and NASA Lewis Research Center

Raj Jain is now at Washington University in Saint Louis, jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u>


The Ohio State University



- Do we really need rule 5?
- Key Design Issues
 - □ Multiplicative vs additive
 - □ Rule 5b
- Our proposal
- **Comparison with other four proposals**
- Parameter selection guidelines for our proposal

Do We Really Need Rule 5?

- □ Is ACR Retention a real problem?
- **Answer: It depends!**
- $\Box \quad ACR retention \Rightarrow ACR >> Source Rate$
 - \Rightarrow Source rate can go high <u>any moment</u>
 - \Rightarrow Long Queue length if $\Sigma ACR >$ Available Bandwidth

Simulation Parameters

```
■ Source: Parameters selected to maximize ACR

ICR = {155.2 Mbps, 1 Mbps}

TBE = 4096 \Rightarrow Rule 6 disabled

CRM (Xrm) = Min{TBE/Nrm, PCR × FRTT/Nrm}

TDF = {0, 1/8}

PNI = {0, 1}

TOF = 2

PCR = 155.52 Mbps, MCR= 0, RIF (AIR) = 1, Nrm = 32,

Mrm = 2, RDF = 1/512, Trm = 100ms, CDF (XDF) = 0.5,

TCR = 10 c/s
```

□ Traffic: Bi-directional, infinite. Source bottlenecked initially.

```
Switch: ERICA modified
Target Utilization = 90%
Averaging interval = min{30 cells, 200 µs}
```

The Ohio State University

Conclusion 1

- ACR Retention can cause sudden queue growth of (ACR-Source Rate)×Feedback delay ×(Number of Sources-1)
- □ Some form of Rule 5 is <u>required</u>
- ❑ ACR Retention even for a small interval
 ⇒ Switches are exposed to "sudden arrivals"
- Rule 5 proposals that allow ACR retention for some time are vulnerable to such "sudden arrivals" during those times
- □ VCs that disable Rule 5 (e.g., by setting ICR = PCR) can cause such "sudden arrivals"
- On LANs: Feedback delay is lower than Inter-RM time Network feedback arrives faster than source sending FRMs ⇒ Rule 5 is not required on LANs

The Ohio State University

Rule 5 Proposals

- □ No Rule 5
- Baseline: As in ATM Forum 95-0013/R9
 - Image: Multiplicative headroom
 - $\Box ACR = Max\{ICR, ACR \times T \times (1-TDF)\}$
- October: As proposed by Barnhart and Jain et al
 - □ Additive headroom
 - $\Box ACR = Max \{ ICR, ACR \times (1-TDF) \}$
- □ AF-TM 1614
 - □ Additive headroom
 - $\Box ACR = Max \{SR + ICR, ACR \times (1 T/Tc)\}$

This Proposal: Modification of our "October" proposal

Rule 5 Design Issues

- □ Additive headroom vs multiplicative headroom
- Action on BRM:

How long should the feedback be ignored after an adjustment?

 \Box Do not ignore (as obtained by PNI = 1)

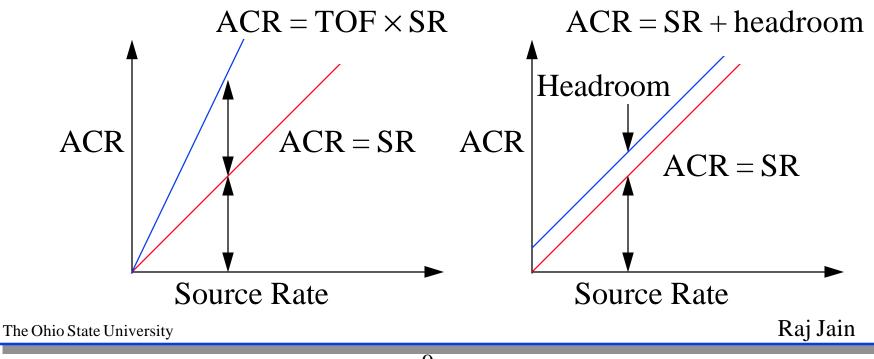
□ Ignore once (as in baseline and other proposals)

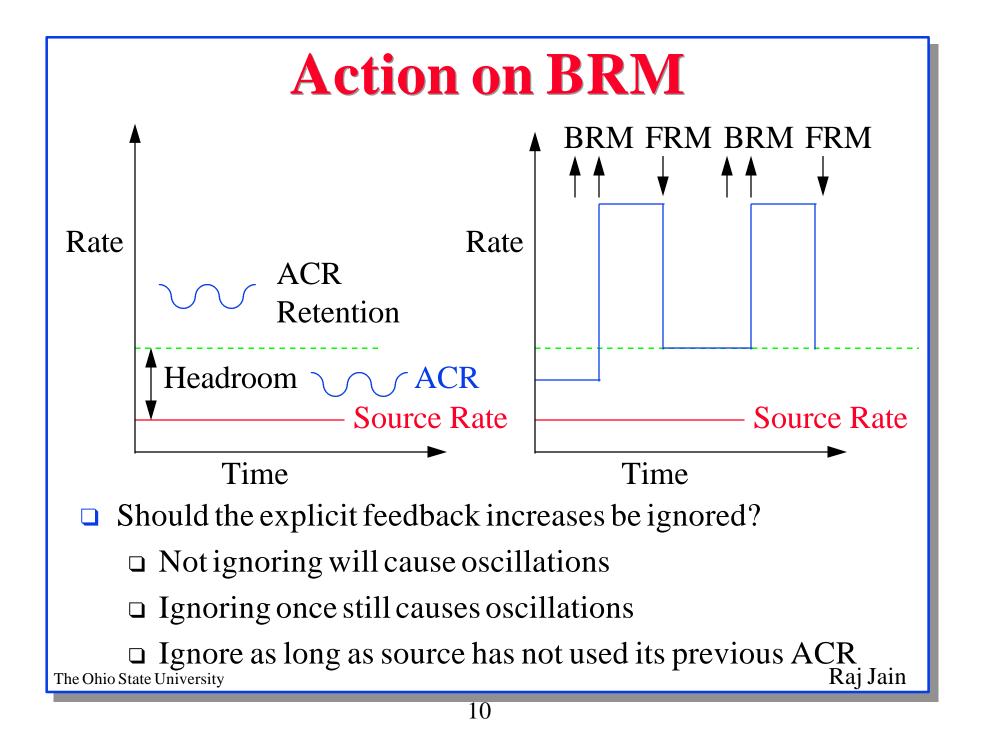
□ Ignore as long as there is any ACR retention

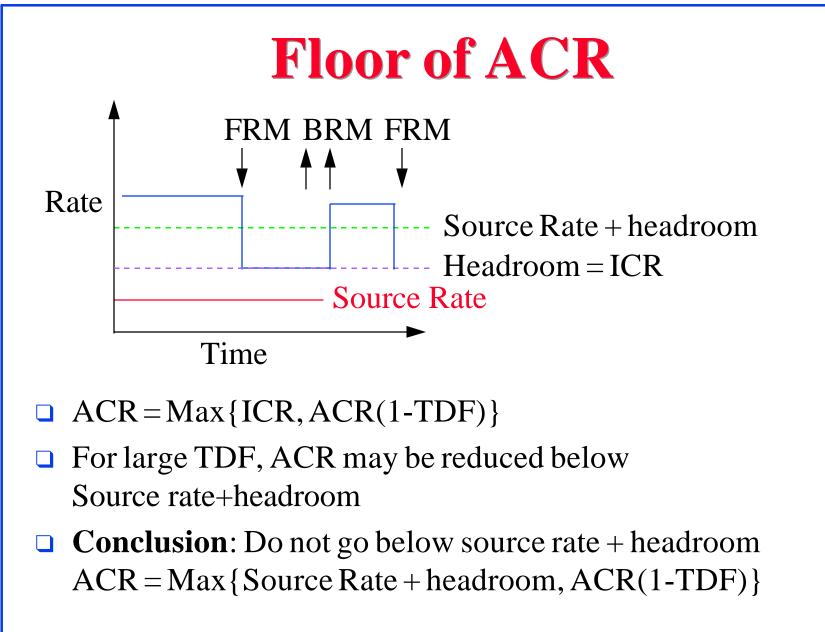
□ Floor of Reduction:

 \Box ICR

 \Box Source Rate + Headroom


Decrease proportional to T vs fixed decrease

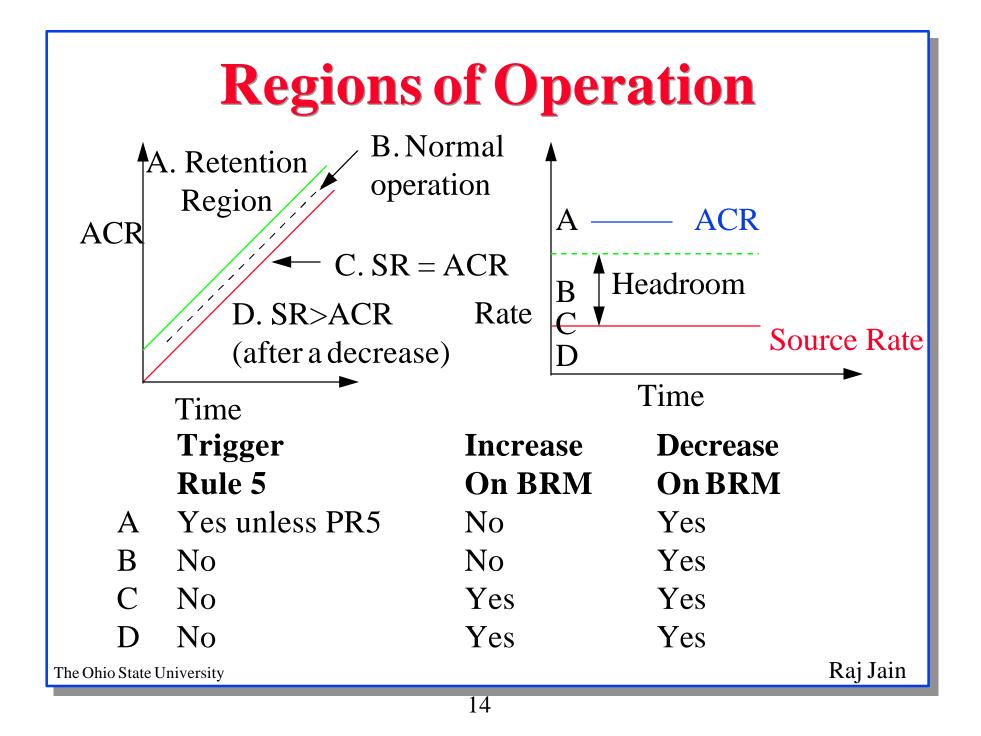

Do we need two parameters? ICR and headroom


The Ohio State University

Multiplicative vs Additive Headroom

- □ Multiplicative headroom \Rightarrow Large (ACR-SR) for some sources \Rightarrow Large queue growth possible
- □ Additive headroom \Rightarrow ACR-SR same regardless of SR
- □ Queue growth = $(ACR-SR) \times Feedback delay \times # of sources$ ⇒ Additive headroom provides a better protection

Our Proposal: Pseudocode


At FRM Send event:

```
SR = Nrm/T;
ACR_ok = ((ACR \le SR) || (TDF == 0.0));
IF(PR5 == False)
     IF (ACR > SR + headroom)
             ACR = Max(SR + headroom, ACR \times (1.0 - TDF));
     ENDIF
ELSE
                                             Initialization:
     PR5 = False:
                                                     ACR_ok = True;
At BRM Receive Event:
                                                     PR5 = False;
IF (NI = 0 AND ACR_ok)
     IF (ACR < ER) PR5 = True ELSE PR5=False;
     ACR = Min(ACR + AIR \times PCR, PCR);
ENDIF
                           ACR_ok \Rightarrow VC has used its ACR
ACR = Min(ACR, ER);
                           PR5 \Rightarrow Network directed increase
ACR = Max(ACR, MCR);
                                                               Raj Jain
```

The Ohio State University

Key Features

- □ SR = Source Rate is a temporary variable. It is not stored between successive execution of the code.
- ACR formula does not allow decrease below ACR + headroom
- □ ACR_ok \Rightarrow Source Rate is at or above ACR \Rightarrow No ACR Retention
- PR5 is set to "true" on network directred increase and set to "false" on all other BRMs
- □ PR5 = Prohibit next Rule 5 decrease
 ⇒ Ignore rule 5 once on next FRM
 Named similar to "Prohibit Next Increase (PNI)"
- □ Source has to use its current allocation before rising (ACR_ok \Rightarrow Source has used its previous allocation) The Ohio State University

Simulation Results:

Source Bottleneck Case

- Queue lengths are large if there is "no rule 5" or if rule 5 is disabled due to high ICR
- Ignoring feedback just once causes oscillations.
 Network is susceptible to large queues during oscillations.
 Our proposal eliminates such oscillations.
- Oscillations caused by low ICR in Baseline are eliminated in our proposal.
- Low headroom and high ICR is feasible with our proposal.
- □ Time to converge depends upon:
 - $\Box \ TDF (Large TDF \Rightarrow Faster convergence)$
 - □ Inter-FRM cell time
- $\Box Continuous flow of BRMs \Rightarrow No protection due to Rule 6$ The Ohio State University Raj Jain

Other Cases

- Normal Rise
- □ Short and long distance VCs sharing the same switch
- Bursty sources
 - □ Metric = Number of bursts transmitted per unit time

Bursty Sources

- **Queue** is not a problem for small/medium bursts
- Any attempt to reduce/eliminate ACR retention will reduce burst throughput

 \Rightarrow Bursty sources want to retain ACR until they need it

With our scheme, bursty sources are eventually allocated ACR = average source rate + headroom

 \Rightarrow headroom should be high for bursty sources headroom should be as low as possible for infinite sources

- Possible solutions for small bursts:
 - Use GCRA type of burst tolerance mechanism to allow small bursts at link rate
 - □ Use a small TDF

The Ohio State University

Decrease α **T** vs **Fixed**

- □ For LANs: Tc is small ⇒ 1/Tc is large ⇒ Decrease is too large
- □ For WANs: Tc is large ⇒ 1/Tc is small ⇒ Decrease is small.
- On WANs, deasonable decreases obtained only if T (time between FRMs and idle time) is large. Does not protect against source bottleneck case (no idle time).
 More opportunity for ACR retention.
- **The issue is that of decreasing every** ΔT vs every N cells
- Tc depends upon round trip time. The feedback delay (round-trip between source and the bottleneck) affects the performance more than round-trip time.

ICR Selection Guidelines

- Used just once on connection setup
- Equivalent to ER in the first RM cell but available right after the connection is set up As if a BRM was tagged to "Connect-Confirm" message.
- For switches, ICR is a short term decision like any other ACR
- □ ICR can be high or low depending upon current congestion

Headroom Selection Guidelines

□ Long term decision

Applies throughout the life of the VC The duration could be several years (for PVCs)

- Controls how much the sources can lie at any time
- Determines how many cells you may receive at once
- Must be as low as possible
- Too low headroom is not good for bursty sources
- Recommended value = 10 Mbps
 Allows LANE traffic at full Ethernet speed
 Use smaller values for WANs
- □ Sources, which have been idle for long, will send an RM cell \Rightarrow Rule 5 will be triggered \Rightarrow Will start at headroom The Ohio State University Raj Jain

TDF Selection Guidelines

- Determines the speed of convergence
 Determines the duration for which network is susceptible to burst arrival due to ACR Retention
- $\Box \text{ Larger value} \Rightarrow \text{Faster convergence}$
- □ Should be as high as possible
- □ Low value preferred for bursty sources
- **TDF** = 0.0 disables rule 5
- **\Box** Recommended value = 1/8

Key Features of Our Proposal

- □ No oscillations even when ICR is low
- □ No oscillations during normal operation
- Less parameters: No TOF or PNI or Tc
- Separates out the role of ICR and headroom
- One parameter TDF can enable/disable the scheme
- Parameters are easy to select and negotiate

Motion Change pseudocode on page 74 section I.1 of R9 as follows and update text and flow chart accordingly At FRM Send event: SR = Nrm/T; $ACR_ok = ((ACR \le SR) || (TDF == 0.0));$ IF (PR5 == False) IF (ACR > SR + headroom) $ACR = Max(SR + headroom, ACR \times (1.0 - TDF));$ ENDIF **Initialization:** ELSE PR5 = False;ACR_ok = True; At BRM Receive Event: PR5 = False; IF (NI = 0 AND ACR ok)IF (ACR < ER) PR5 = True ELSE PR5=False; $ACR = Min(ACR + AIR \times PCR, PCR);$ **ENDIF** ACR = Min(ACR, ER);ACR = Max(ACR, MCR);Raj Jain The Ohio State University

- Rule 5 is required for large bursts or ACR retaining infinite sources on WANs
- □ ACR retention, even for a short duration, can be dangerous.
- ICR and headroom have different roles.
 Headroom is a long term commitment and should be allocated conservatively.