96-1268: MIMO Latency -Revised Definition

Raj Jain, Gojko Babic

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Raj Jain

Jain/

□ Assumes input speed = output speed

The Ohio State University

- Host speed should not affect the measured switch performance
- Delay caused by input/output link speeds should not be attributed to switch latency.

(a) Input speed < Output speed (b) Input speed > Output speed

- □ FIFO = FILO Cell output time
- □ LILO = FILO Cell input time
- □ LIFO = FILO (Cell input time + Cell output time)
- We will show that MIMO is the correct switch latency MIMO = Min{LILO, FILO - Cell Input Time*R_h/R_{out}} The Ohio State University

Summary: Single Cell

No.	Case	FIFO	LILO	MIMO
1	Input speed = output speed	\checkmark	\checkmark	
2	Input speed \geq output speed	\checkmark	×	
3	Input speed < output speed	×		

□ MIMO is the only metric that applies to all cases.

□ These results also apply to contiguous frames

- Frames coming in and out of a switch are not contiguous
- Position and number of gaps may change

```
MIMO = Min{LILO, FIT*R<sub>in</sub>/R<sub>out</sub>}
Where, FIT = Frame input time
= First-bit in to last-bit in
The Ohio State University
```


□ FIFO does not reflect expansion. \Rightarrow FIFO is incorrect.

□ LILO = FILO - FIT = FIFO + expansion = D \Rightarrow MIMO = Min{LILO, FILO-FIT} = D

□ LILO and MIMO are correct.

The Ohio State University

Summary: Discontiguous Frames Input Speed = Output Speed

No.	Case	FIFO	LILO	MIMO
1a	No Change in gaps	\checkmark	\checkmark	
1b	Expansion	×		
1c	Compression	×		

MIMO is the only metric that applies to all cases so far.

Need to store bits to avoid underrun

□ In the best case, last bits of each cell has no delay

 \Box FIFO is non-zero \Rightarrow FIFO is incorrect.

 $\Box \text{ LILO} = 0 \Longrightarrow \text{LILO is correct}$

 $\Box FILO = FIT \Longrightarrow FILO - FIT * R_{in}/R_{out} = Positive$ $\Longrightarrow MIMO = Min \{LILO, FILO-FIT * R_{in}/R_{out} \} = 0$ The Ohio State University Raj Jain

		J

Summary: Discontiguous Frames Input Speed > Output Speed Zero First Bit Delay

No.	Case	FIFO	LILO	MIMO
3a	No Change in gaps	\checkmark	×	
3b	Expansion	×	×	
3c	Compression	×	×	

MIMO is the only metric that applies to all cases so far.

- These cases are similar to 3a, 3b, 3c except that the switch delay has increased by d, where d is the first bit delay.
- It can be shown that the previous summary table applies here also.
 The Ohio State University
 Rate University

Summary: Discontiguous Frames Input Speed > Output Speed

No.	Case	FIFO	LILO	MIMO
3a+3a'	No Change in gaps		×	
3b+3b'	Expansion	×	×	
3c+3c'	Compression	×	×	

□ MIMO is the only metric that applies to all cases.

- □ The switch latency is same in both cases.
- The user perceived performance in case b is worse than that in case a.

User Perceived Performance (Cont)

- The user perceived performance depends upon the link speeds
- The switch latency measured by MIMO is independent of the input/output link speeds.
- User can not begin its work until the last bit has been received and so user perceived performance is reflected by LILO.
- The difference LILO-MIMO is due to link speed differential. This is called buffering delay and is nonzero only if the input has to be buffered (input speed > output speed).

The Ohio State University

User Perceived Performance (Cont)

□ In all other cases, buffering delay is zero (Input speed ≥ output speed). In these cases,

MIMO = LILO.

□ In general:

User Perceived Delay = LILO

= MIMO + Buffering Delay

- Buffering delay and user perceived delay is never negative.
- Switches are smart and can compress a frame resulting sometimes in negative delay (when input speed < output speed)</p>

The Ohio State University

- Switch Latency: MIMO = Min{LILO, FILO - $FIT*R_m/R_{out}$ }
- Switch latency is not affected by host or link speeds
- \Box User perceived delay = LILO
- Buffering delay = LILO MIMO