

The Ohio State University

Raj Jain

Goals

- □ Frame-level only.
- Definitions applicable at AAL layer Extendible to higher layers.
- □ Applicable to switch or group of switches

Statistical Variations

- □ Repeat NRT times for TRT seconds each Default NRT = 30, TRT = 60 seconds
- **Sample** = { $T_1, T_2, T_3, ..., T_n$ }
- **Sample mean** $T = (1/n)\Sigma T_{\iota}$
- □ Sample Standard Deviation $\sigma_T = (\Sigma(T\iota T)^2)/(n-1)$
- **Standard Error = Standard Deviation** \sqrt{n}
- □ $100(1-\alpha)$ % confidence interval
 - = $(T-z_{[1-\alpha/2]}Std_Err, T-z_{[1+\alpha/2]}Std_Err)$

Confidence	α	Ζ
90%	0.1	1.615
99%	0.01	2.346
99.9%	0.001	3.291

Background Traffic

- With and without background traffic
- **D** To be defined
- Without background traffic until then

Statistical Variations

- □ Send NML cells at TTL/(NML + 1) intervals
- □ NML = $\underline{\mathbf{n}}$ umber of $\underline{\mathbf{m}}$ arked cells for $\underline{\mathbf{l}}$ atency measurement
- $\Box TTL = \underline{T} \text{ otal } \underline{T} \text{ ime for } \underline{L} \text{ atency measurement}$
- Default: NML = 30 TTL = 31 seconds
- Calculate mean and standard error (Same way as for throughput)

Background Traffic

- With and without background traffic
- Background traffic to be specified
- Without background traffic until then

Reporting Results

	Throughput							
Traffic	Lossless		Peak		Full-load		Latency	
Pattern	Mean	Std Err	Mean	Std Err	Mean	Std Err	Mean	Std Err
n-to-n								
Straight								
n-to-n								
Cross								
n-to-1								
1-to-n								

The Ohio State University

Raj Jain

Default Parameter Values

Parameter	Meaning	Default
NRT	Number of repetitions of throughput experiments	30
TRT	Time of each repetition of throughput experiment	60 sec
FSA	Frame Size for AAL performance experiments	9188 Bytes
NML	Number of marked frames sent in latency experiments	30
TTL	Total time of latency experiments	31 sec

Motion					
\Box Include the text of 96-08011 in the baseline draft.					
Raj Jain					

- $\Box FIFO = LILO$
- $\Box FILO = FIFO + Frame time$
- $\Box \ LIFO = LILO Frame time$
- □ Nominal Frame output time NFOT = Frame size/output speed
- \Box Total Delay = FILO = Switch latency + Frame time
- $\Box Switch Latency = FILO NFOT = FIFO = LILO$

- $\Box Switch Latency = FILO Frame Time = FIFO = LILO$
- □ This assumes contiguous frames \Rightarrow No idle cells intermingled
- □ Also assumes input and output lines are of same speed.
- □ FIFO does not reflect the degradation caused by gaps
- LILO does not reflect the degradation caused by output speed.
- □ FILO- NFOT is similarly incorrect if input < output speed
- □ MIMO = Min{FILO-NFOT, LILO} is the correct measure. The Ohio State University Raj Jain

17

Latency: Comparison

No.	Case	FIFO	LILO	FILO-	MIMO	
				NFOT		
1a	Input = output, contiguous		\checkmark	\checkmark		
	frame, zero-delay switch					
1b	Input = output, contiguous		\checkmark			
	frame, nonzero-delay switch					
1c	Input = output, non-contiguous	This case is not possible				
	frame, zero-delay switch					
1d	Input = output, non-contiguous	×	\checkmark		\checkmark	
	frame, nonzero-delay switch					
2a	Input > output, contiguous		×			
	frame, zero-delay switch					
2b	Input > output, contiguous		×			
	frame, nonzero-delay switch					
The Ohi	The Ohio State University Raj Jain					

18

Latency: Comparison (Cont)

No.	Case	FIFO	LILO	FILO-	MIMO	
				NFOT		
2c	Input > output, non-contiguous frame, zero-delay switch	This case is not possible				
2d	Input > output, non-contiguous frame, nonzero-delay switch	×	×	\checkmark	\checkmark	
3a	Input < output, contiguous frame, zero-delay switch	×	\checkmark	×	\checkmark	
3b	Input < output, contiguous frame, nonzero-delay switch	×	\checkmark	×	\checkmark	
3c	Input < output, non-contiguous frame, zero-delay switch	×		×	\checkmark	
3d	Input < output, non-contiguous frame, nonzero-delay switch	×		×		

Case 1a: Input = Output Speed, Contiguous Frame, Zero-delay Switch

- □ Zero-delay switch = wire (or a cut-through switch)
- Switch Latency = FILO NFOT = FIFO = LILO = MIMO = 0
- □ All four alternatives give correct answer

- Example: A very long wire
- $\Box Switch Latency = FILO NFOT = FIFO = LILO = MIMO$
- □ All four metric give the same answer.

Case 1c: Input = Output Speed, Non-Contiguous Frame, Zero Delay Switch

- $\Box Switch = A short wire$
- □ All bits exit as soon as the enter.
 - \Rightarrow Non-contiguous frame is not possible.

Case 1d: Input = Output Speed, Non-Contiguous Frame, Nonzero Delay Switch

- □ FIFO does not reflect the degradation caused by gaps. FIFO is not a correct measure of switch latency.
- Switch Latency = total delay frame time
- $\Box FILO NFOT = LILO = MIMO$
- Other three metrics give the same answer and are correct.

Case 2a: Input > Output Speed Contiguous Frame, Zero-Delay Switch

- \Box Zero delay switch = Two port memory
- $\Box \quad \text{Total Delay} = \text{FILO}$

= Switch Latency + Nominal Frame Output Time

- Switch Latency = FILO NFOT = FIFO = 0
- □ In this case, LILO will give wrong answer.
- □ LILO > FILO NFOT \Rightarrow MIMO = FILO NFOT = 0
- □ MIMO is also correct

- In this case, LILO is affected by the output speed and gives wrong answer.
- $\Box \ LILO > FILO NFOT \Rightarrow MIMO = FILO NFOT$
- □ MIMO is also correct

Case 3a: Input < Output Speed, Contiguous Frame, Zero-delay Switch

- □ Zero-delay Switch = 2-port memory
- Contiguous frames are possible only if the transmission of the first bit is timed based on frame size.
- □ FIFO is non-zero \Rightarrow Not a correct measure of switch latency
- \Box FILO NFOT = FIFO = non-zero. Also incorrect.
- LILO is zero. So it is correct.
- $\square MIMO = Min\{LILO, FILO NFOT\} is zero. It is also correct.$

- To maintain frame contiguity, the departure of first bit has to be scheduled depending upon the output speed.
- FIFO can be made arbitrarily large by increasing the output link speed (and not changing the switch at all).
 FILO - NFOT= FIFO is similarly incorrect.
- □ LILO is the only metric that can be argued to be correct.
- LILO < FILO NFOT
 MIMO = Min{LILO, FILO NFOT} = LILO
 MIMO is also a correct measure.

- □ Zero-delay switch = two port memory
- □ To obtain contiguous cell, the first bit of the cell is sent such that the last bit can be sent immediately upon arrival.
- □ FIFO is non-zero. So it is incorrect.
- □ FILO NFOT is non-zero. So it is incorrect.
- Gaps are caused by speed difference. Not attributable to switch.
- LILO is zero. So it is correct
- $\square MIMO = Min\{LILO, FILO NFOT\} is zero.$

So it is also correct.

Raj Jain

Case 3d: Input < Output Speed, Non-Contiguous Frame, Nonzero-delay Switch

- To maintain cell contiguity, first bit transmission time depends upon the output speed. FIFO can be made arbitrarily large by increasing the output link speed (and not changing the switch).
- □ FIFO can also be made small by sending the first cell fast but introducing idle cells later \Rightarrow FIFO is not correct.
- \Box FILO NFOT > FIFO is similarly incorrect.
- □ LILO is the only metric that can be argued to be correct.
- $\Box \text{ LILO} < \text{FILO} \text{NFOT} \implies \text{MIMO} = \text{LILO}$