96-0520: Considerations for Frame-Level Throughput and Latency Measurements of ATM Switches

Raj Jain, Gojko Babic, Bhavana Nagendra

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Throughput

- Zero Loss and Peak
- Unit = Frames/sec, cells/sec, or bits/sec
 bits/sec is most intuitive and
 does not require specifying a size.
- □ Measure With and without background (VBR)

- $\Box FIFO = LILO$
- $\Box FILO = FIFO + Frame time = FIFO + Frame size m/Speed C_{out}$
- □ LIFO = FIFO Frame time = FIFO m/C_{out}
- \Box Total Delay = FILO = Switch latency + Frame time
- ❑ This assumes contiguous frames
 ⇒ No idle cells intermingled
- □ Also assumes input and output lines are of same speed.

Latency Definitions: Comparison

	Case	FIFO	LILO	FILO	MIMO
				-m/C _{out}	
1a	$C_{in} = C_{out}$, Contiguous Frame	\checkmark	\checkmark	\checkmark	\checkmark
1b	$C_{in} = C_{out}$, Non-contiguous Frame	X	\checkmark	\checkmark	
2a	$C_{in} > C_{out}$, Contiguous Frame	\checkmark	Х	\checkmark	
2b	$C_{in} > C_{out}$, Non-contiguous Frame	X	X	\checkmark	
3a	C _{in} < C _{out} , Contiguous Frame,	X	\checkmark	X	
	Zero Switch Latency				
3b	C _{in} < C _{out} , Non-Contiguous Frame,	X	\checkmark	X	
	Zero Switch Latency				
3c	C _{in} < C _{out} , Contiguous Frame,	X	\checkmark	X	
	Non-zero switch latency				
3d	C _{in} < C _{out} , Non-contiguous Frame,	X		X	
	Non-zero switch Latency				

- □ It it difficult to get contiguous frame on output since output is much faster unless the switch stores the entire frame.
- Some of the flaws of traditional definitions can also be seen by considering a switch with zero latency.
- □ There are four possible cases:
 - □ 3a. Contiguous Frame, Zero switch latency
 - □ 3b. Non-contiguous frame, zero switch latency
 - □ 3c. Contiguous Frame, non-zero switch latency
 - □ 3d. Non-Contiguous Frame, non-zero switch latency

□ MIMO = Min{LILO, FILO - m/C_{out} } is zero. It is also correct.

• MIMO = Min{LILO, FILO - m/C_{out} } is zero. So it is also correct.

- FIFO can be made arbitrarily large by increasing the output link speed (and not changing the switch at all).
 FIFO is not an incorrect measure of switch latency.
- □ FILO m/C_{out} = FIFO is similarly incorrect.
- LILO is the only metric that can be argued to be the correct measure of switch latency.
- LILO < FILO m/C_{out}
 MIMO = Min{LILO, FILO m/C_{out}} = LILO
 MIMO is also a correct measure.

- □ FIFO can be made arbitrarily large by increasing the output link speed (and not changing the switch latency at all).
- □ FIFO can also be made small by sending the first cell fast but introducing idle cells later \Rightarrow FIFO is not correct.
- **I** FILO m/C_{out} > FIFO is similarly incorrect.
- □ LILO is the only metric that can be argued to be correct.
- □ LILO < FILO m/C_{out} MIMO = Min{LILO, FILO - m/C_{out} } = LILO

Throughput: Zero-loss throughput and peak throughput
 Latency = Min{LILO, FILO-m/C_{out}} = MIMO