

Features

□ Scheme

□ Simulation results

The Ohio State University

Design Features

- U Works for bursty traffic
- □ Fairness: Analytically proven
- Measured overload/load at switch/source
- $\square Bounded oscillations \Rightarrow Good for VBR$
- Parameters: Few, insensitive, easy
- Bipolar feedback
- Several options: BECN

Precise fairness computation

- □ The switches specify reduction factor in cell
- □ The destination returns the cell to the source
- □ The source adjusts the transmission rate

Source Algorithm

□ Arbitrarily select: Initial TCR Averaging interval T \Box Send sells at inter-cell time = 1/TCR □ Send control cells every T • On receiving a control cell: \Box T \leftarrow Averaging interval from cell □ Execute LAF algorithm

Switch LAF Algorithm

□ Parameters:

- □ Averaging interval T
- \Box Target utilization band (TUB): U(1± Δ)
- □ Compute Target # of cells per T at U
- Count cells received over T
- □ Load = Received/Target

$$\Box T_{cell} \leftarrow Max\{T_{cell}, T\}$$

 $\Box LAF_{cell} \leftarrow Max\{LAF_{cell}, Load\}$

The Ohio State University

Single-Source Configuration

All links 150 Mbps, 1 km Max-min optimal: 150 Mbps TUB = 0.90 (1 ± 0.1) Averaging interval = 150 µs

The Ohio State University

The Ohio State University

- □ All links 150 Mbps, 1 km
- □ Max-min optimal: 50, 50, 50 Mbps
- **TUB=** $0.90(1 \pm 0.1)$

```
Averaging interval 150 μs
```

The Ohio State University

VC Cell Rates

The Ohio State University

Link Utilization

The Ohio State University

Queue Length

The Ohio State University

Queue Size with Startup at PCR/10

The Ohio State University

VC Cell Rates in WAN Configuration

The Ohio State University

Queue Size with WAN Configuration

The Ohio State University

VC rates with Train Traffic

The Ohio State University

- Design Principles: Input rate overload, Feedbackcontrol relationship, TCR/OCR specification, TUB fairness
- Features: High throughput, Low delay, Avoidance, Bipolar
- □ Basic Scheme: Source/switch LAF algorithm

□ Options: Thoroughly tested all variations

The Ohio State University