

The Ohio State University

Jain@ACM.Org

Raj Jain

Disclaimers

- This work was done by Anna Charny for her MS Thesis at MIT (MIT-TR-601, May 1994) supervised by Dave Clark and Raj Jain
- This presentation is not sponsored by Digital Equipment Corporation
- □ The proposed scheme is a possible variation of the rate based approach
- □ It is being presented in support of the rate based approach.

UWhy bit-scheme in 1984

- □ Why explicit rate indication in 1994
- □ The Scheme
- Simulation Results

Why Bit Indication?

- $\Box \operatorname{Bit} \Longrightarrow \operatorname{Up} \operatorname{or} \operatorname{down}$
- Connectionless networks
 - \Rightarrow No knowledge of flows or their demands
- □ 1984: Big shortage of bits in header
- □ No new packets
- □ 1984: No better congestion schemes

Why Explicit Rate Indication?

- □ Connection oriented networks
 ⇒ Switches know "who's who"
 ⇒ More predictability of paths
- Longer-distance networks
 - \Rightarrow Can't afford too many round-trips
 - \Rightarrow More information is better
- Rate-based control
 - \Rightarrow Queue length = Δ Rate ' Δ Time
 - \Rightarrow Time is more critical than with windows

- □ Sources send one RM cell every n cells
- The RM cells contain "Stamped (desired) rate" and a "reduced-bit"
- □ The switches adjust the rate down and sets the reduced bit
- Destination returns the RM cell to the source
- □ Source adjusts to the specified rate

Source Algorithm

- Always follow the network's specified "stamped rate"
- □ If reduced bit is set in returned RM Cell
 - Decrease to the rate specified
- If reduced bit is clear in returned RM Cell
 send a higher rate in "stamped rate" field
 Increase to the rate returned

Destination Algorithm

□ Return all RM cells to the source

Switch Algorithm

- Optimally allocate available capacity among all VC's
- □ Optimal =

Most money for the provider
Most throughput for the link
Most power (=Throughput/Delay) for link
Max-min Fair allocation

Max-Min Fair Allocation

- □ At it's bottleneck,
 - every VC gets its maximum fair-share.
- Every link is maximally utilized.
- \Box Rij = Rate of ith VC on jth link

$$\Box Ri = Rij = Ri.$$

- \Box Σ_j Rij \leq Cj = Capacity of the jth link
- At ith VC bottleneck:

 \Box Let k = # of VC's, Ri \geq C/k

A Sample Switch Algorithm (for Max-Min Optimality)

- Switches compute an "advertised rate"
- RM cells with "stamped ≤ advertised" rate are not touched
- In RM cells with "stamped > advertised" rate, stamped rate is reduced to the advertised rate and reduced bit is set.

Computing Advertised Rate

Advertised Rate = Capacity/number of VCs

Underloading $V \underbrace{c_{apac}}_{Advertised rate} = V \underbrace{c_{apac}}_{Hat} \underbrace{Fac}_{Advertised rate} = V \underbrace{c_{apac}}_{Hat} \underbrace{Fac}_{Advertised rate} \underbrace{Fac}_{Hat} \underbrace{Fac}_{Advertised rate} \underbrace{Fac}_{Hat} \underbrace{Fac}_{Advertised rate} \underbrace{Fac}_{Hat} \underbrace{Fac}_{Advertised rate} \underbrace{Fac}_{Hat} \underbrace{Fac}_{Hat} \underbrace{Fac}_{Advertised rate} \underbrace{Fac}_{Hat} \underbrace{Fac}_{Hat$

of flows - # of underloading flows

If change, go to Step 2

Two iterations are sufficient.

Switches keep a table of stamped rates of all VCs

The Ohio State University

Jain@ACM.Org

Properties of Scheme

- No guessing of level of overload/underload
 No oscillations
- Convergence within 4k round trips where k is the number of bottlenecks
- Initial rate doesn't matter
- □ Policing is trivial.
 - Switches can monitor returning RM cells
- Designed for connection-oriented networks
- □ Robust to RM cells loss or errors

Round trips for Convergence

Time Session	0	15	48	67
1	4	5		2
2	2	2		
3	2			
4	1	3	2	1
5	7	6	3	1

The Ohio State University

Jain@ACM.Org

Explicit rate indication

- □ Provides more information than a single bit
- □ Converges fast
- □ Provides a choice of switch optimality criteria
- **Easy to police**

The Ohio State University

Jain@ACM.Org

Raj Jain

Experiment 3

Jain@ACM.Org

Raj Jain

Time Session	0-15	15-48	48-67	67-100
1	4000	3000		5000
2	2000	3000		
3	2000			
4	2000	3000	6000	5000
5	6000	6000	6000	5000

All links at 100 Mbps
Six VC's at rates 50, 25, 25, 25, 25, 75
All links are maximally utilized: 50, 100, 100, 100

Jain@ACM.Org