Aggregation of MIMO Latency

Arjan Durresi, Raj Jain, Gojko Babic The Ohio State University

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

mo.htm

Raj Jain

The Ohio State University

- Desired Properties of Metrics
- □ FILO, LILO Latency Issues
- □ MIMO Latency: Definition and Examples
- □ MIMO vs LILO
- Measurement Results
- □ MIMO Latency of a Path

Desired Properties of Metrics

- Measured performance = Function {System, Workload}
- Metrics that depend highly on workload and less on the system are undesirable

Another Equivalent Definition

- □ First Definition: MIMO = $FILO FILO_0$.
- Index "0" indicates zero-delay switch
- Definition of FILO:
 - FILO = Frame Input Time + LILO
 - \circ FILO₀ = Frame Input Time + LILO₀
- □ Second Definition: MIMO = LILO LILQ O_{OUT} OUT

MIMO vs LILO: 1-Cell Frame

□ Consider a switch with one cell delay □ LILO = 3c, $LILO_0 = 2c$, MIMO = 1c

MIMO vs LILO: 2-Cell Frame OC-3 OC-1 C 2c3c-4c5c-6c-7c-8c-□ Consider a switch with one cell delay \circ LILO = 5c, LILO₀ = 4c, MIMO = 1c

MIMO vs LILO

Frame Size	LILO	LILO0	MIMO
1c	4c	3c	1c
10c	31c	30c	1c
100c	301c	300c	1 c
1,000c	3,001c	3,000c	1 c
10,000c	30,001c	30,000c	1c
10,0000c	30,0001c	300,000c	1c

MIMO vs LILO

$\square MIMO = LILO - LILO_0$

- LILO measures the total delay.
- LILO₀ measures the workload dependent part of the LILO delay. Depends upon the "mismatch" between input and output speed.
- MIMO measures the delay introduced only by switch itself.
- □ For the n-cell Frame: n depends upon the workload • LILO = (3n+1)c, LILO₀ = 3nc, MIMO = 1c

Workload

- □ Input Rate (155 Mbps) > Output Rate (25 Mbps)
- Gaps between the cells of the frame increased from 0 to 7 cells. Queueing up to 5-cell gap

Measurement Results

□ Input 155Mbs, Output 25Mbs, 32-cell frame

□ LILO and FILO depend heavily from frame pattern

□ MIMO indicates the switch contribution in the delay

Test	Frame	LILO ₀	LILO	FILO	MIMO
No.	Pattern				
1	No gap	351.71	385.01	563.3	33.3
2	1-cell	263.98	295.78	561.8	31.8
	gaps				
3	2-cell	176.25	209.05	562.8	32.8
	gaps				
4	3-cell	88.52	119.82	561.3	31.3
	gaps				

All times are in microseconds

The Ohio State Universit

Raj Jain

Delay Components in a path

$\text{MIMO}_{\Sigma} = \Sigma \text{ MIMO}_{i} + \Sigma \text{ LILO}_{0i} \text{ - LILO}_{0\Sigma}$

- MIMO_i component delay introduced by switch *i* LILO_{0i} workload-dependent component delay
- introduced the mismatch of the input-output speeds of the ith component. $LILO_{0i}$ can be computed from Input/output speed of the ith component
- □ LILO_{0∑} workload-dependent delay that would have been introduced if the path were to be replaced by an ideal switch. LILO_{0∑} can be computed from the input/output speed of the entire path.

The Ohio State University

- FILO and LILO are significantly affected by the workload
- □ FILO is meaningless if large gaps in the frames
- LILO is meaningless if large number of back-to-back frames
- □ MIMO provides system latency.
- □ MIMO can be aggregated.

The Ohio State University