



- □ 10 reasons against LCD
- □ MIMO vs LCD
- Measurement Results

#### **LCD: Definition**

□ Last Cell Delay:

- LIFO Latency of the last cell if it is a network
- FILO Latency of the last cell if it is a wire



## **10. It is too late.**

- ❑ Straw-ballot ⇒ Time to remove bugs and not introduce them.
- □ No prior experience with this metric

# 9. LCD is not Accepted Anywhere

- □ First introduced at ANSI's May'99 meeting.
- □ Not accepted there.

The Ohio State University

# 8. Contradicts ATMF TM Specs

Cell delay by TM is defined as FILO for both wire and switches and not LIFO for one and FILO for other

The Ohio State University

#### 7. Contradicts ATMF Perf-Test Specs

- □ Frame reference events FRE1 and FRE2 have already been defined on page 11 of btd-perf-test
- $\Box FILO = t_{FRE2} t_{FRE1}$
- □ LCD needs yet another set of frame reference events that have the same name but different definition



#### **5. Arbitrary Wire vs Switch Distinction**



- A black box containing 1-km spool of fiber has a fixed delay of 5 μs
- $\Box$  Cell time at 1.5 Mbps = 424 bits/1.5 Mbps = 283  $\mu$ s
- $\Box$  LCDwire = FILO = 288  $\mu$ s
- $\Box$  LCDsw = LIFO = -278  $\mu$ s

The Ohio State University

# 4. LCD can be Negative

- All non-store and forward devices can have negative LCD.
- Examples: Digital amplifiers, multiplexors
- □ It is negative for all cut-through switches





#### 2. LCD does Not Account for SUT

- □ LCD is extremely workload dependent
- □ Output Speed = Input Speed /2
- □ Input Cell Time = c, Output Cell Time = 2c
- □ Number of Cells per frame = 3





□ Input Cell Time = c, Output Cell Time = nc

 $\Box$  Number of Cells per frame = m



| Frame Size | LCD   |  |  |
|------------|-------|--|--|
| 1          | 0     |  |  |
| 2          | 99    |  |  |
| 10         | 891   |  |  |
| 100        | 9801  |  |  |
| 1000       | 98901 |  |  |

The Ohio State University

# **1. LILO is Better**

- □ LILO is additive
- □ Same definition applies to both wires and switches
- □ LILO is non-negative
- □ LILO is already mentioned in the Perf-test spec.
- □ There is no need to make any changes.

#### **MIMO Latency: Definition**

#### MIMO Latency = FILO - $FILO_0 = LILO - LILO_0$ = LCD - LCD<sub>0</sub>

- $\Box$  FILO<sub>0</sub> LILO<sub>0</sub>, LCD<sub>0</sub> = Latency thru an ideal network
- □ Ideal Network = Zero length wire (in many cases)





## MIMO vs LCD

- $\square MIMO = LCD LCD_0$ 
  - LCD measures the total delay.
  - $\circ$  LCD<sub>0</sub> measures the workload dependent part of the LCD delay.
  - MIMO measures the delay introduced only by switch itself.
- For the m-cell Frame: m depends upon the workload
  LCD = (m-1)(n-1)c, LCD<sub>0</sub> = (m-1)nc-mc,
  MIMO = LCD LCD0 = 1c

## LCD vs MIMO

| Frame Size | LCD   | LCD0  | MIMO |
|------------|-------|-------|------|
| 1          | 0     | -1    | 1    |
| 2          | 99    | 98    | 1    |
| 10         | 891   | 890   | 1    |
| 100        | 9801  | 9800  | 1    |
| 1000       | 98901 | 98900 | 1    |

LCD depends upon the frame size
 MIMO is independent of the framesize



## Workload

- □ Input Rate (155 Mbps) > Output Rate (25 Mbps)
- Gaps between the cells of the frame increased from 0 to 7 cells. Queueing up to 5-cell gap



#### **Measurement Results**

- □ Input 155Mbs, Output 25Mbs, 32-cell frame
- $\Box$  LCD = LILO Cell output time = LILO 16.9 µs
- □ LCD and FILO depend heavily from frame pattern
- □ MIMO indicates the switch contribution in the delay

| Test | Frame          | LILO <sub>0</sub> | LILO   | FILO  | MIMO |
|------|----------------|-------------------|--------|-------|------|
| No.  | Pattern        |                   |        |       |      |
| 1    | No gap         | 351.71            | 385.01 | 563.3 | 33.3 |
| 2    | 1-cell<br>gaps | 263.98            | 295.78 | 561.8 | 31.8 |
| 3    | 2-cell<br>gaps | 176.25            | 209.05 | 562.8 | 32.8 |
| 4    | 3-cell<br>gaps | 88.52             | 119.82 | 561.3 | 31.3 |

All times are in microseconds

The Ohio State University

# **Non-Accountability: Example 2**





#### **Systems with Internal Bottleneck**



# **Summary: LCD**

- 10. It is too late.
- 9. LCD is not Accepted Anywhere
- 8. Contradicts ATMF TM Specs
- 7. Contradicts ATMF Perf-Test Specs
- 6. It is non-intuitive
- 5. Arbitrary Wire vs Switch Distinction
- 4. LCD can be Negative
- 3. LCD is Not Additive
- 2. LCD does Not Account for SUT

1. LILO is Better The Ohio State University



- □ LCD is significantly affected by the workload
- □ FILO is meaningless if large gaps in the frames
- LCD is meaningless if large number of back-to-back frames