97-0831: GFR -- Providing Rate Guarantees with FIFO Buffers to TCP Traffic

Rohit Goyal, Raj Jain, Sonia Fahmy, Bobby Vandalore, Shivkumar Kalyanaraman

Raj Jain is now at Washington University in Saint Louis, jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/

Sastri Kota, Lockheed Martin Telecommunications Pradeep Samudra, Samsung Telecom America, Inc. Contact: jain@cis.ohio-state.edu

http://www.cis.ohio-state.edu/~jain/

The Ohio State University

- Guaranteed frame rate
- **Goals of this study**
- **Controlling TCP windows**
- Differential Fair Buffer Allocation
- Simulation results

Guaranteed Frame Rate (GFR)

- □ GFR guarantees:
 - □ Low loss ratio to conforming frames
 - □ Best effort to all frames
 - Fair share of unused capacity (Not well defined. May be removed.)
- □ User specifies an MCR and a maximum frame size
- Conforming Frames = Frames which are untagged by the end system and pass the GCRA like policing mechanism.

3

Motivation

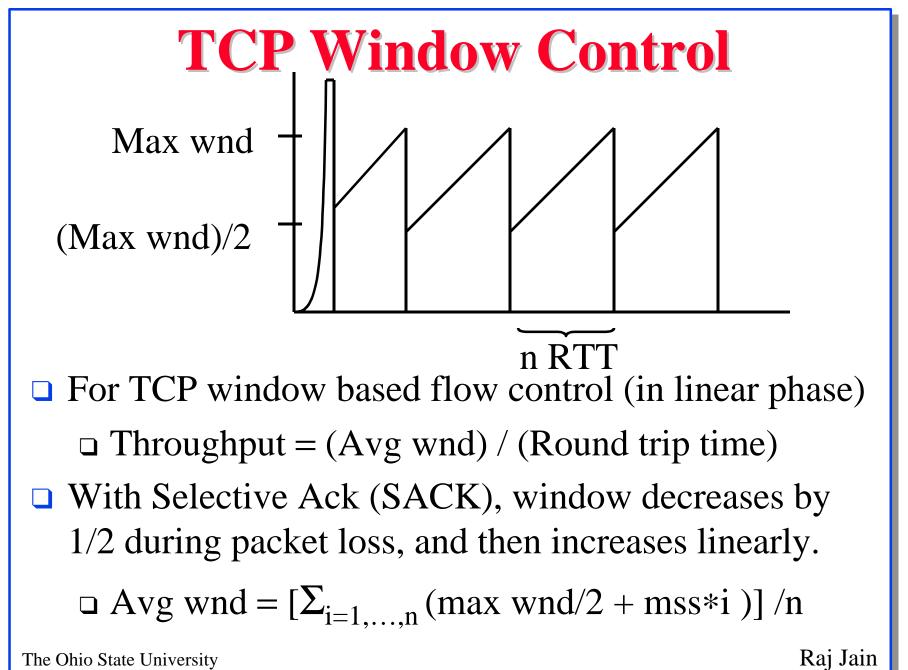
- □ GFR VCs could be used by routers separated by an ATM cloud.
- Users could also set up GFR VCs for traffic that could benefit from rate guarantees.
- Higher layers would expect some guarantees at that level.
- Higher layer traffic management may interact with GFR traffic management and achieve unfair throughput.
- A good GFR implementation should "work with" most common traffic types.

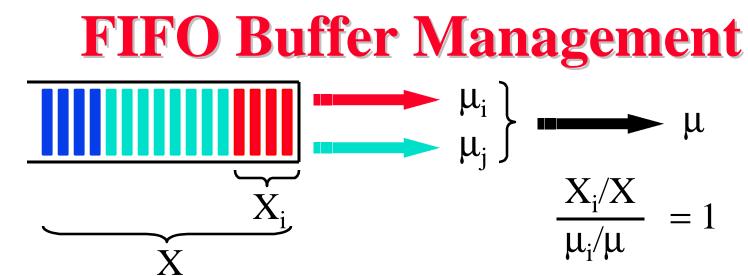
The Ohio State University

GFR Implementation Issues

- □ FIFO queuing versus per-VC queuing
 - □ Per-VC queuing is too expensive.
 - FIFO queuing should work by setting thresholds based on bandwidth allocations.
- Network tagging and end-system tagging
 - End system tagging can prioritize certain cells or cell streams.
 - Network tagging used for policing -- must be requested by the end system. [??]
- Buffer management policies

Der-VC accounting policies need to be studied The Ohio State University Raj Jain

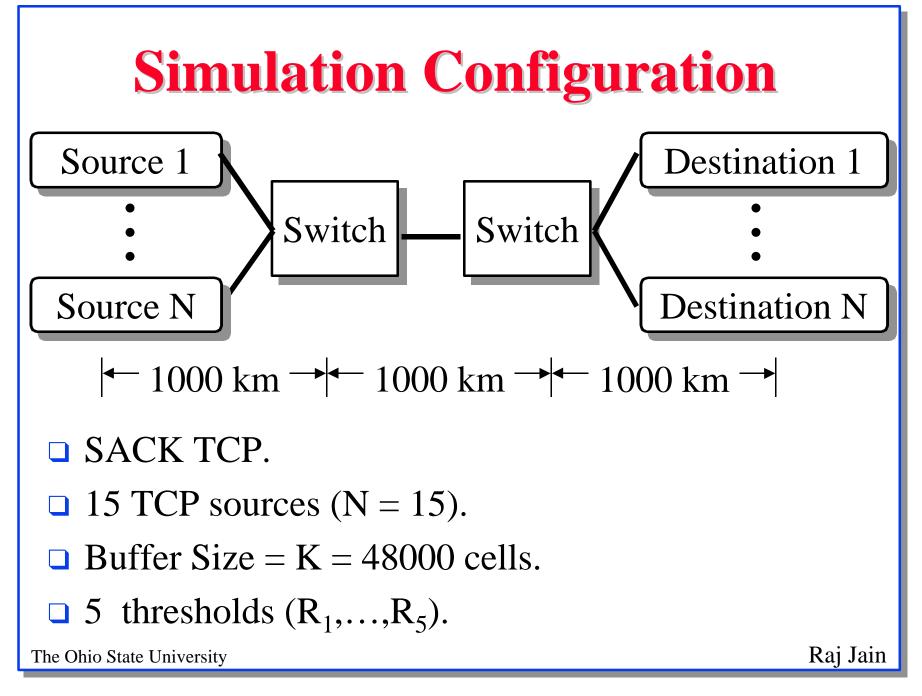

Summary of Past Results


- □ In the July meeting it was shown
 - Difficult to guarantee TCP throughput with FIFO queuing.
 - □ Can do so with per-VC queuing.
- All FIFO queuing cases were studied with high target network load, i.e., most of the network bandwidth was allocated as GFR.
- Need to study cases with lower percentage of network capacity allocated to GFR VCs.

Goals

- Provide minimum rate guarantees with FIFO buffer for TCP/IP traffic.
- Guarantees in the form of TCP throughput.
- How much network capacity can be allocated before guarantees can no longer be met?
- Study rate allocations for VCs with aggregate TCP flows.

7


- □ Fraction of buffer occupancy (X_i/X) determines the fraction of output rate (μ_i/μ) for VCi.
- Maintaining average per-VC buffer occupancy enables control of per-VC output rates.
- □ Set a threshold (R_i) for each VC.
- When X_i exceeds R_i, then control the VC's buffer occupancy.

The Ohio State University

Buffer Management for TCP

- TCP responds to packet loss by reducing CWND by one-half.
 - □ When *i*th flow's buffer occupancy exceeds R_i , drop a <u>single</u> packet.
 - □ Allow buffer occupancy to decrease below R_i, and then repeat above step if necessary.
- \Box K = Total buffer capacity.
- **Target utilization** = $\Sigma R_i / K$.
- □ Guaranteed TCP throughput = Capacity $* R_i/K$
- \Box Expected throughput, $\mu_i = \mu * R_i / \Sigma R_i$. ($\mu = \Sigma \mu_i$)

The Ohio State University

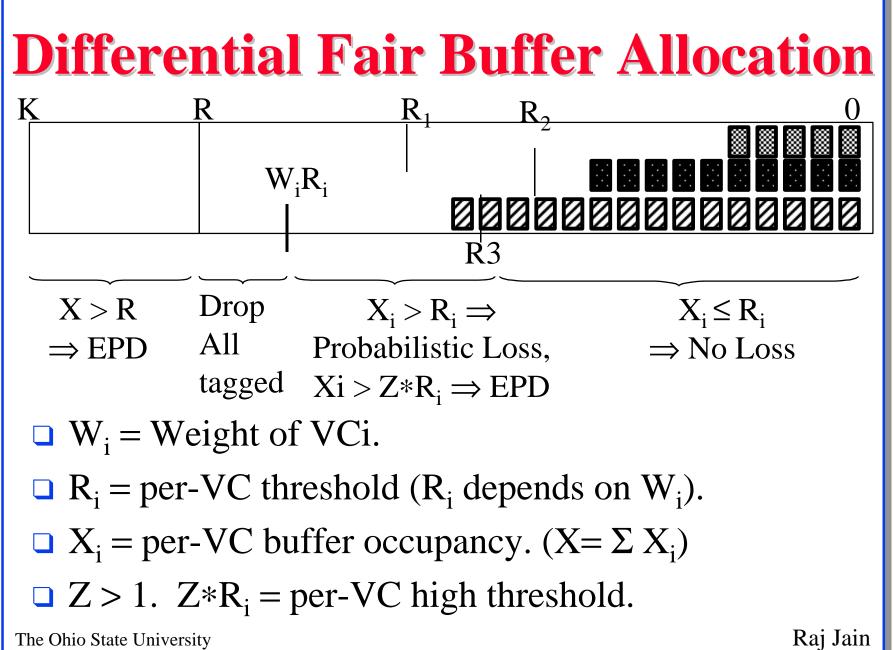
Simulation Config (contd.)						
Sources	Expt	Expt	Expt	Expt	Expected	
	1	2	3	4	Throughput	
$1-3(R_1)$	305	458	611	764	2.8 Mbps	
$4-6(R_2)$	611	917	1223	1528	5.6 Mbps	
7-9 (R ₃)	917	1375	1834	2293	8.4 Mbps	
10-24 (R ₄)	1223	1834	2446	3057	11.2 Mbps	
13-15 (R ₅)	1528	2293	3057	3822	14.0 Mbps	
$\Sigma R_i/K$	29%	43%	57%	71%		

- □ Threshold $R_{ij} \propto [K*MCR_i/PCR]$
- □ Total throughput $\mu = 126$ Mbps. MSS =1024B.
- Expected throughput = $\mu * R_i / \Sigma R_i$

The Ohio State University

Simulation Results

ТСР	Throughput ratio			
Number	(observed / expected)			
1-3	1.0	1.03	1.02	1.08
4-6	0.98	1.01	1.03	1.04
7-9	0.98	1.00	1.00	1.02
10-12	0.98	0.99	0.98	0.88
13-15	1.02	0.98	0.97	1.01


□ All ratios close to 1.

Variations increases with utilization.

□ All sources experience similar queuing delays

TCP Window Control

- TCP throughput can be controlled by controlling window.
- □ FIFO buffer ⇒ Relative throughput per connection is proportional to fraction of buffer occupancy.
- □ Controlling TCP buffer occupancy \Rightarrow May control throughput.
- \Box High buffer utilization \Rightarrow Harder to control throughput.
- Formula does not hold for very low buffer utilization Very small TCP windows
 - \Rightarrow SACK TCP times out if half the window is lost

┛

Differential Fair Buffer Allocation

When first cell of frame arrives:

 \Box IF (X_i < R_i) THEN

□ Accept frame

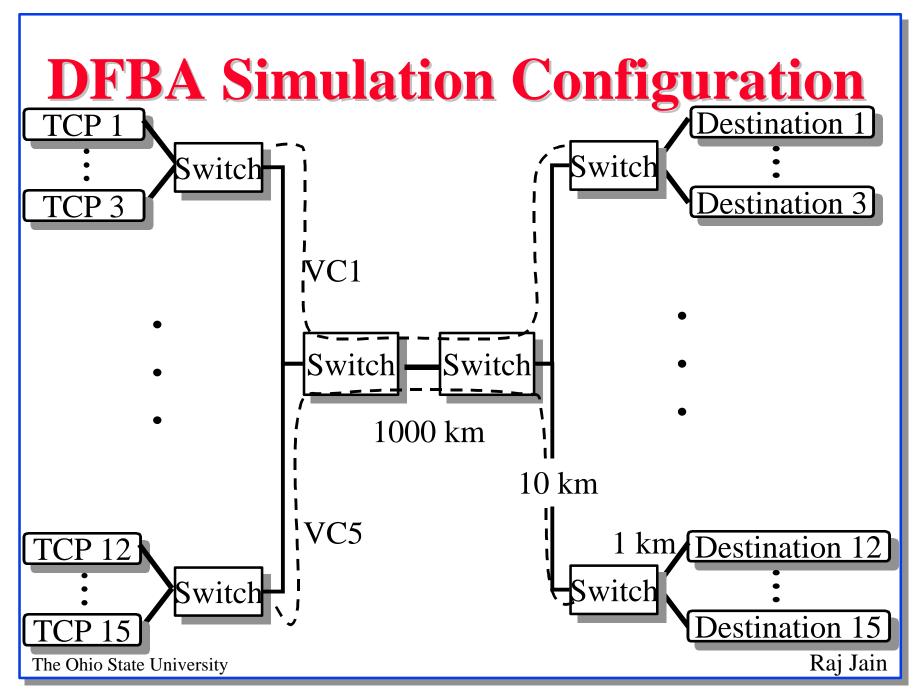
 \Box ELSE IF (X > R) OR (Xi > Z*Ri) THEN

□ Drop frame

 \Box ELSE IF (X < R) THEN

Drop cell and frame with

$$P\{drop\} = W_i * \frac{X_i - R_i}{R_i * (Z-1)}$$


The Ohio State University

Drop Probability

 \Box Increases as X_i increases above R_i

□ Indicates higher levels of congestion.

- □ Proportional to W_i
 - With larger window, more packets can be dropped without timing out.
- $\square X_i > Z^*R_i \Longrightarrow EPD \text{ is performed.}$

DFBA Simulation Configuration

□ SACK TCP, 15 TCP sources.

- □ 5 VCs through backbone link. 3 TCP's per VC.
- □ Local switches merge TCP sources.

VC	Thresholds for		
Number	backbone switch		
1	152	305	611
2	305	611	1223
3	458	917	1834
4	611	1223	2446
5	764	1528	3057

The Ohio State University

Simulation Results

VC	Throughput		
Number	Ratios		
1	1.04	1.01 (1.16)	
2	1.05	1.02 1.06	
3	0.97	1.03 1.05	
4	0.93	1.00 (1.13)	
5	1.03	0.99 (0.80)	

- Achieved throughput per-VC proportional to fraction of threshold allocated to the VC.
- □ Higher variation with increase in buffer allocation.

The Ohio State University

- SACK TCP throughput may be controlled with FIFO queuing under certain circumstances:
 - □ TCP, SACK (?)
 - $\Box \Sigma MCRs < Uncommitted bandwidth$
 - □ Same RTT (?), Same frame size (?)
 - □ No other non-TCP or higher priority traffic (?)

Future Work

- □ Other TCP versions.
- □ Effect to non-adaptive (UDP) traffic
- □ Effect of RTT
- Effect of tagging
- Effect of frame sizes
- Parameter study
- □ Buffer threshold setting formula?
- □ How much buffer can be utilized?