98-0151: A Definition of Generalized Fairness and its Support in Switch Algorithms

> Bobby Vandalore, Sonia Fahmy, Raj Jain, Rohit Goyal and Mukul Goyal

- General Fairness: Definition
- Relationship to Pricing/Charging Policies
- Achieving General Fairness
- Example modification to a Switch Algorithm
- □ Simulation: Configuration and Parameters
- □ Simulation: Results

Notation

- Define following [Notation from TM4.0]:
 - A = Total available bandwidth
 - \circ U = Sum of bandwidth of underloaded connections
 - $\circ B = A U$, excess bandwidth
 - \circ N_a = Number of active connections
 - \circ N_u = Number of active connections bottlenecked elsewhere
 - $n = N_a N_u$, number of active connections bottlenecked on this link

The Ohio State University

Notation (Cont)

- M = Sum of MCRs of active connections
- OB(i) = Generalized Fair allocation for connection i
- O MCR(i) = MCR of connection i
- o w(i) = pre-assigned weight associated with i

TM4.0 Definitions

- 1. B(i)=B/n
- 2. B(i)=MCR(i)+(B-M)/n
- 3. B(i) = Max{MCR(i), Max-Min Share}
- 4. B(i) = B*(MCR(i)/M)
- 5. B(i) = w(i)*B/Sum(w(j))
- Definition 5 does not always guarantee MCR
- Definition 3 may result in total of fairshare being more than the capacity

General Definition

□ FairShare

$$B(i) = MCR(i) + \frac{w(i) (B - M)}{\sum_{i=1,n} w(j)}$$

□ This definition is a superset of 1, 2, 4 in TM4.0

□ Always ensures MCR

Mapping to TM 4.0

$$\Box$$
 w(i) = MCR(i):

$$B(i) = MCR(i) + (B-M) MCR(i) / M$$

$$= B* (MCR(i)/M)$$

This is Definition 4 (Proportional to MCR)

Pricing Function

 \Box T = Small time interval, W = Number of bits

R = Average rate W/T

□ Cost C = f (W,R). If C is restricted to continuous differentiable functions: $C = \sum_{ij} a_{ij} W^i R^j$

□ For <u>all</u> values of W and R:

 $O C \geq 0 \quad \partial C / \partial W \geq 0 \quad \partial C / \partial R \geq 0$

○ ∂ (C/W)/ ∂ W ≤ 0 [Economy of Scale]

∂(C/R)/∂R ≤ 0 [Economy of Scale]

□ The <u>only</u> function that satisfies all 5 conditions is:

$$C = a_{00} + a_{10}W + a_{01}R + a_{11}WR$$

The Ohio State University

A Simple Pricing Fn

- □ f() is non-decreasing w.r.t to W
 f() is non-increasing w.r.t to T ⇒ non-decreasing w R
- □ A simple function satisfying these requirements is: C = c + w W + r R
 - Here, c = Fixed cost per connection w = Cost per bit (How much)
 - r = Cost per Mbps (How fast)

Pricing With MCR

 $\Box \text{ Let } L = MCR$

- Cost C = c + w W + r (R-L) + m L
 Here, m = dollars per Mbps of MCR
 r = dollars per Mbps of extra bandwidth.
- □ Consider two users with MCRs L_1 , L_2 . Rates R_1 , R_2 and bits transmitted W_1 , W_2 (assume $W_1 \ge W_2$)

$$C_1 = c + w W_1 + r (R_1 - L_1) + m L_1$$

$$C_2 = c + w W_2 + r (R_2 - L_2) + m L_2$$

 \square Economy of Scale: C/W is a decreasing function of W $C_1/W_1 \le C_2/W_2$

Pricing (cont.)
⊂/W₁ + w + r (R₁ - L₁)/W₁ + mL₁/W₁ ≤

$$c/W_2$$
+w+r(R₂-L₂)/W₂+mL₂/W₂
Using R_i = W_i/T
⊂/(R₁T) + w + r(R₁-L₁)/(R₁T) + mL₁/(R₁T) ≤
 $c/(R_2T)$ +w+ r(R₂-L₂)/(R₂T)+mL₂/(R₂T)
 c/R_1 -rL₁/R₁+mL₁/R₁ ≤ c/R_2 -r L₂/R₂+mL₂/R₂
(c+(m-r)L₁)/(c+(m-r)L₂) ≤ R₁/R₂
(R₁-L₁)/(R₂-L₂) ≥ (a+L₁)/(a+L₂)
Here, a = c/(m-r)
⇒ Weight should be a linear function of MCR.
This is the policy used in this contribution.

Achieving Gen. Fairness

 $\square B(i) = MCR(i) + w(i) (B - M) / \Sigma_{j=1,n} w(j)$

Switch allocates MCR and a weighted share of the excess bandwidth

- \Box ACR(i) = MCR(i) + ExcessFairshare(i)
- □ ExcessFairshare(i) = w(i) (B-M)/ $\Sigma_{j=1,n}$ w(j)
- ACR(i) MCR(i) should converge to ExcessFairshare(i)

Activity Level

- The allocation should also consider activity level of a source.
 There is no point in giving extra bandwidth to sources not using it.
- Activity level AL(i)
 = min{1, (SrcRate(i)-MCR(i))/ExcessFairshare(i)}
- ExcessFairshare(i) = w(i)AL(i)(B-M)/ $\Sigma_{j=1,n}$ w(j) AL(j)
- Recursive definition. Converges in just a few iterations.

ERICA+

End of Averaging Interval:

- □ Total ABR Capacity= Link Capacity VBR Capacity
- Target ABR Capacity = F(Q) x Total ABR Capacity
 F(Q) is a function of queue length.
 1-F(Q) of the capacity is used to drain the queues
- Overload z = ABR Input Rate/(Target ABR Capacity)
- □ Effective # of active sources = $\Sigma_{j=1,n}$ AL(j)
- **G** Fairshare
 - = Target ABR Capacity /Eff. # of active sources

ERICA+ (cont.)

When a BRM is received:

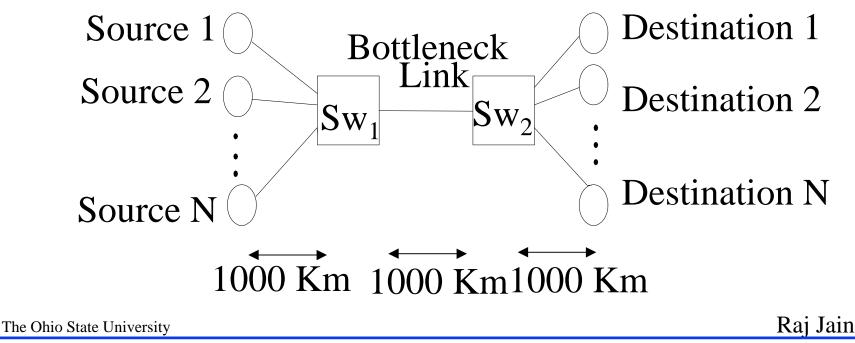
- □ FairShare(i) = AL(i)Fairshare^{*}
- □ For Efficiency: VCShare(i) = $(SrcRate(i))/z^*$
- \Box ER(i) = max (FairShare(i), VCShare(i))*
- \Box ER_{in_RM_Cell}
 - = $min{ER_{in_RM_Cell}, ER(i), TargetABRCap}$
- Near steady state the VCShare(i) term converges to Fairshare(i), achieving max-min fairness and efficiency.
- *Done only on first BRM

Modified ERICA+

End of Averaging Interval:

- □ Total ABR Cap= Link Cap VBR Cap - $\sum_{j=1,n} \min{SrcRate(i), MCR(i)}$
- □ Target ABR Cap = F(Q) x Total ABR Cap
- Input Rate
 - = ABR Input Rate $\Sigma_{j=1,n} \min\{SrcRate(i), MCR(i)\}$
- Overload z = Input Rate/(Target ABR Capacity)
- □ Effective weight of active sources = $\sum_{j=1,n} w(j)AL(j)$
- **Excess**Fairshare
 - = Target ABR Cap /Eff. weight of active sources

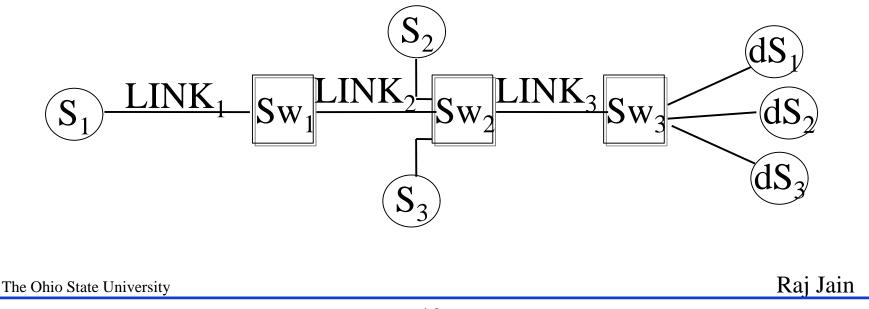
Mod. ERICA+ (cont.)

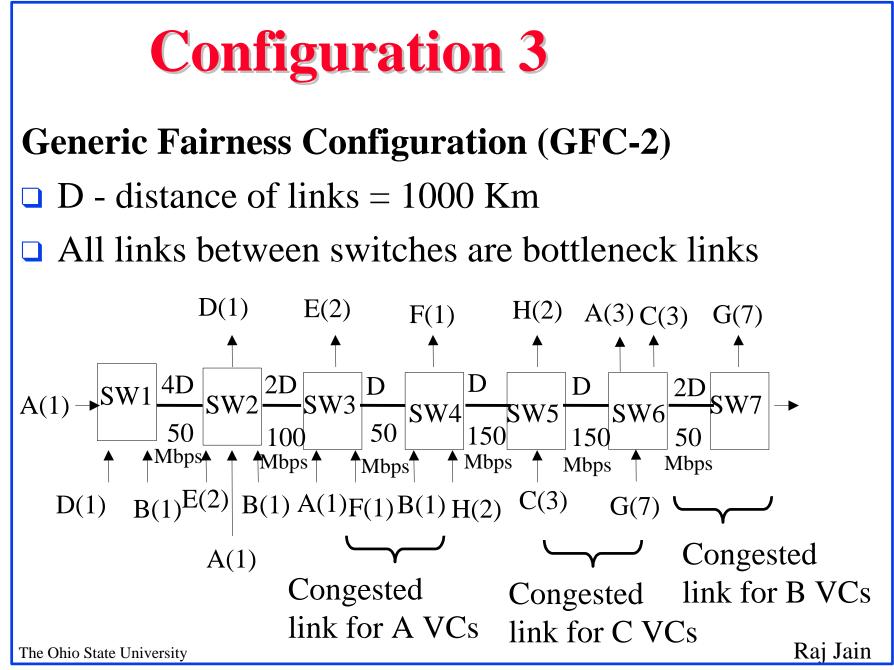

When a BRM is received:

- $\Box ExcessFairShare(i) = w(i)AL(i)ExcessFairshare$
- For Efficiency: VCShare(i) = (SrcRate(i) MCR(i))/z
 ER(i)
 - = MCR(i) + max {ExcessFairshare(i), VCShare(i)}
- $\square ER_{in_RM_Cell} = min\{ER_{in_RM_Cell}, ER(i), TargetABRCap\}$
- Near steady state the VCShare(i) term converges to ExcessFairshare(i), achieving generalized fairness and efficiency.

Configuration 1

Simple configuration


- N infinite ABR source,
 N ABR destinations (N = 3 in simulations)
- One way traffic. From sources to destination



Configuration 2

Source Bottleneck configuration

 Source S1 is bottlenecked at 10 Mbps (i.e., it always sends data at a rate of upto 10 Mbps, irrespective of its ACR)

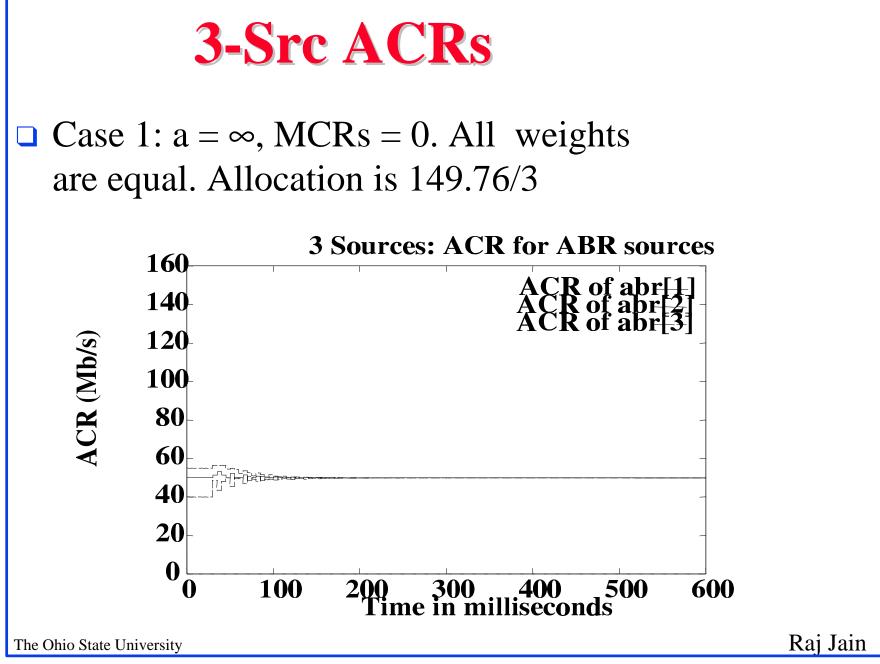
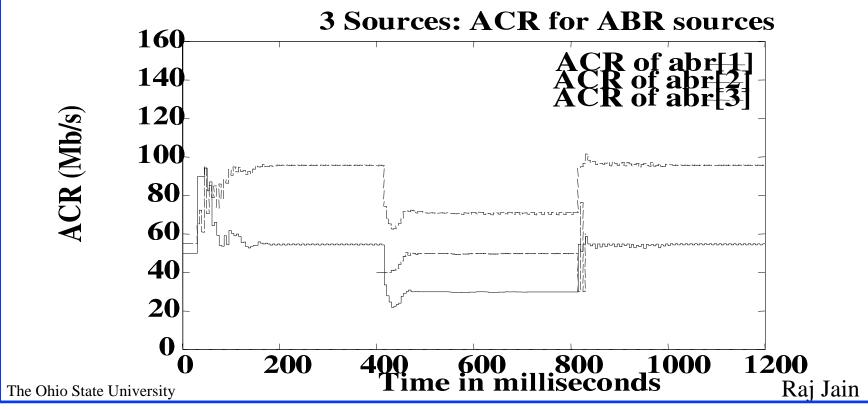


Table 1: Simulation Parameters

Configuration	Link	Averaging	Target
Name	Distance	Interval	Delay
Three Sources	1000 Km	5 ms	1.5 ms
Source Bottleneck	1000 Km	5 ms	1.5 ms
GFC-2	1000 Km	15 ms	1.5 ms

The Ohio State University

Table 1: 3-Src Results							
Case Number	Src Num	MCR	a	Weight Function	Expected Fair Share	Actual Share	
1	1	0	8	1	49.92	49.92	
	2	0	∞	1	49.92	49.92	
	3	0	8	1	49.92	49.92	
2	1	10	8	1	29.92	29.92	
	2	30	∞	1	49.92	49.92	
	3	50	8	1	69.92	69.92	
3	1	10	5	15	18.53	16.64	
	2	30	5	35	49.92	49.92	
	3	50	5	55	81.30	81.30	
For all 3	For all 3 cases, the algorithm achieves desired allocation						


Ta	Table 3: 3-Src Transient							
					Expected	Actual	Expted	Actual
Case	Src	MCR	a	weight	Frshare	(non-	Frshare	(trans.)
Num.	Num			func.	(non-	trans)	(trans.)	share
					trans.)	share		
1	1	0	8	1	74.88	74.83	49.92	49.92
	2	0	8	1	-	_	49.92	49.92
	3	0	8	1	74.88	74.83	49.92	49.92
2	1	10	8	1	54.88	54.88	29.92	29.83
	2	30	8	1	-	-	49.92	49.92
	3	50	8	1	94.88	95.81	69.92	70.93
3	1	10	5	15	29.92	29.23	18.53	18.53
	2	30	5	35	-	-	49.92	49.92
	3	50	5	55	119.84	120.71	81.30	81.94
Sou	□ Source 2 (transient) is active only between 400-800							

ms. Expected allocation achieved.

The Ohio State University

3-Src Transient ACRs

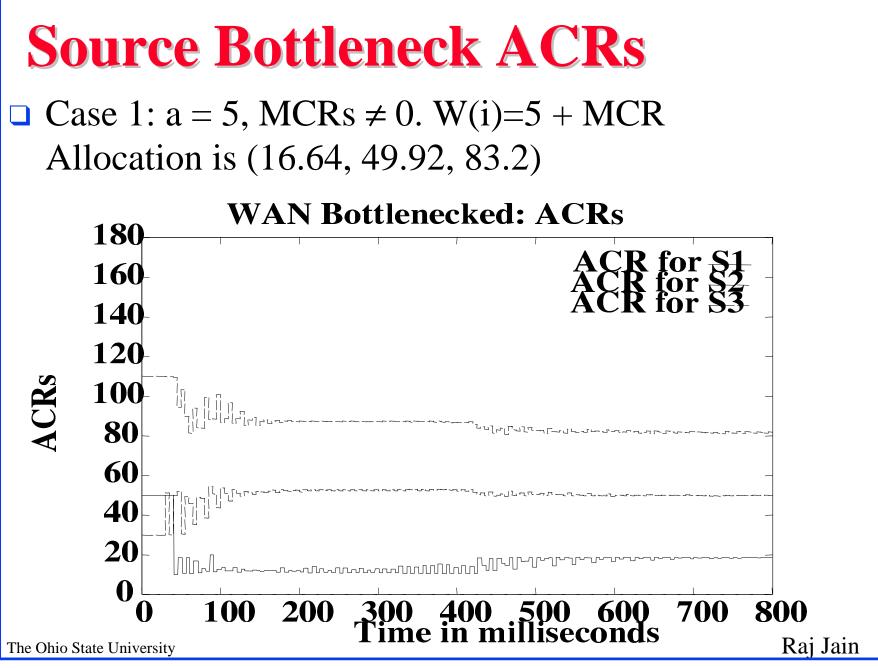

□ Case 2: $a = \infty$, MCRs $\neq 0$. All weights are equal. Allocation is (29.92,39.92,69.92)

Table 4: Source-Bottleneck							
					Expectd	Using	Using
Case	Src	MCR	a	Wt.	Fairshre	CCR in	Measurd
Num	Num			Func.		RMcell	CCR
1	1	0	∞	1	49.92	49.85	49.92
	2	0	∞	1	49.92	49.92	49.92
	3	0	∞	1	49.92	49.92	49.92
2	1	10	∞	1	29.92	-	29.62
	2	30	∞	1	49.92	-	49.60
	3	50	∞	1	69.92	-	71.03
3	1	10	5	15	18.53	-	18.42
	2	30	5	35	49.92	-	49.92
	3	50	5	35	81.30	-	81.93

□ Rates converge only if measured source rate is used

The Ohio State University

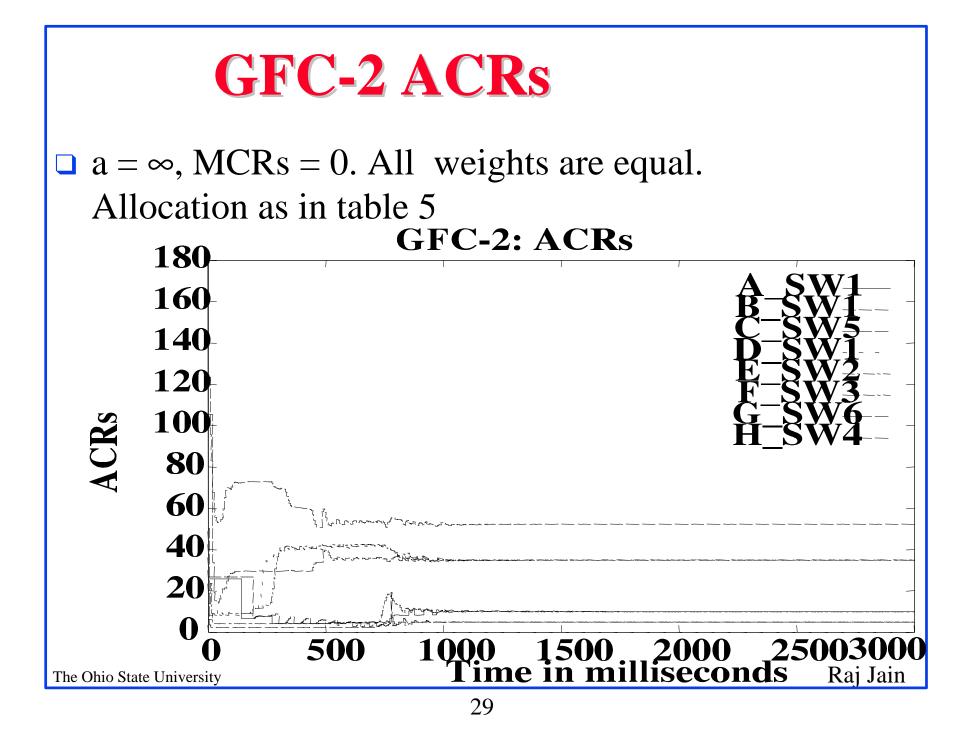


Table 5: GFC-2

VC	Expected	Actual
type	allocation	Allocation
A	10	9.85
В	5	4.97
C	35	35.56
D	35	35.71
E	35	35.34
F	10	10.75
G	5	5.00
Н	52.5	51.95

□ For all VCs, $a = \infty$ and MCR=0 (Max-min share). Fairness is achieved in presence of link bottleneck

The Ohio State University

- **\Box** Fair Allocation = MCR(i)
 - + Weighted Share of Excess Bandwidth
- Different TM4.0 definitions map to general fairness
- □ Effective weight = Weight × Activity level of VCs
- □ Modified ERICA+ achieves general fairness
- Source bottleneck configuration need per VC accounting to correctly measure the source rate

Motion

Add the following to Section I.3 Example

Fairness Criteria in TM4.0

6. MCR plus weighted share: The bandwidth allocation for a connection is its MCR plus a weighted share of the bandwidth B with used MCRs removed.

 $B(i) = MCR(i) + (B-M) \times (w(i)/sum w(j))$

Comments: Max-Min, MCR plus equal share, and Allocation proportional to MCR are special cases. The weights may be defined independent of MCR or dependent on MCR. The Ohio State University Raj Jain