96-1173 + 96-1267 Switch Algorithm Testing: A Case Study with ERICA

Raj Jain, Sonia Fahmy, Shivkumar Kalyanaraman, Rohit Goyal

Raj Jain is now at Washington University in Saint Louis, jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u>

The Ohio State University

Overview

- Objectives of ATM traffic management
- □ The ERICA algorithm
- Extensions of ERICA
- Performance evaluation of ERICA and ERICA+

Objectives of Traffic Mgmt

- **□** Efficiency and minimal delay
- □ Fairness: Max-min allocation and fairness index
- Good steady state: Minimal oscillations.
- □ Fast transient response
- ❑ Adaptation to the presence of multiple traffic classes ⇒ ABR capacity is not fixed
- Scalability to various speeds, distances, number of switches and number of VCs
- Need to adapt to high variance in demand and different traffic models

The Ohio State University

Source Models

Increasing complexity:

- Persistent cell traffic
- Bursty cell traffic
- □ Source bottleneck
- Persistent TCP sources
- Bursty TCP sources

ERICA Scheme: Basic

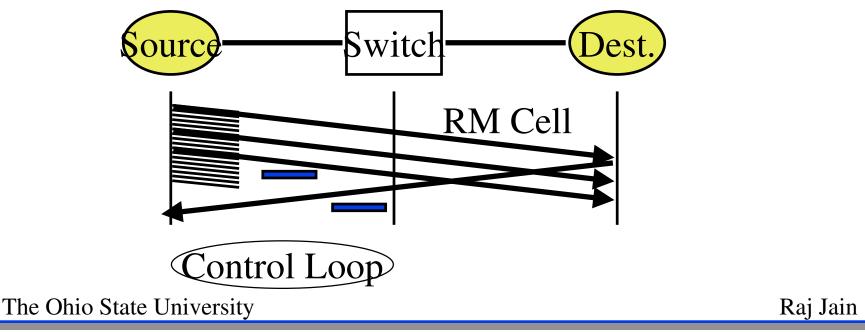
- $\Box \underline{E} x plicit \underline{R} ate \underline{I} ndication for \underline{C} ongestion \underline{A} voidance$
- Set target rate, say, at 95% of link bandwidth ABR Capacity = Target Utilization * Link Bandwidth
- Monitor input rate and number of active VCs Overload = ABR Input rate/ABR Capacity
- □ This VC's Share = VC's Current Cell Rate/Overload
- □ Fair share = Target rate/ Number of Active VCs
- \Box ER = <u>Max(Fair share</u>, This VC's share)
- $\Box ER = Min{ER, ABR Capacity}$
- \Box ER in Cell = Min(ER in Cell, ER)

The Ohio State University

ERICA Features

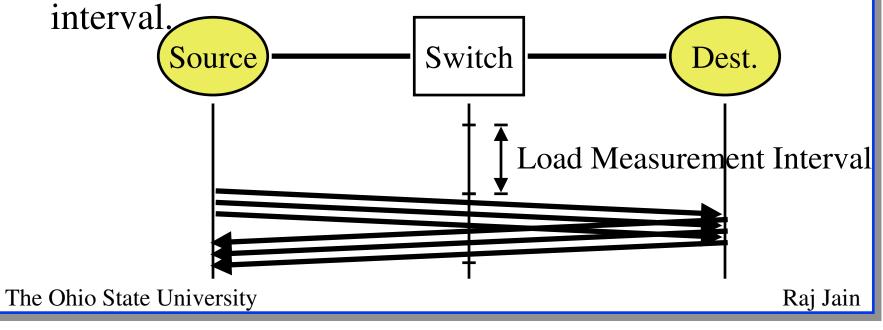
- Uses measured overload
 - \Rightarrow If sources use less than allocated capacity,
 - all unused capacity is reallocated to others.
- □ Two parameters: Target utilization, Averaging interval
- □ Simple Order (1) computation
- □ Fast response due to optimistic design
- Fairness is improved at each step.
 Even under overload.
- Converges to efficient operation in most cases
- □ Max-min fair in most cases

The Ohio State University


ERICA Extensions

- 1. Forward CCR
- 2. Same feedback in one Interval
- 3. Fair share first
- 4. per-VC CCR measurement
- 5. Time + count based averaging
- 6. ERICA with VBR
- 7. Bi-directional Counting
- 8. Max-min Fairness
- 9. Averaging of number of sources
- 10. Boundary cases
- 11. Averaging of load factor
- 12. ERICA+ (ERICA with queue control)

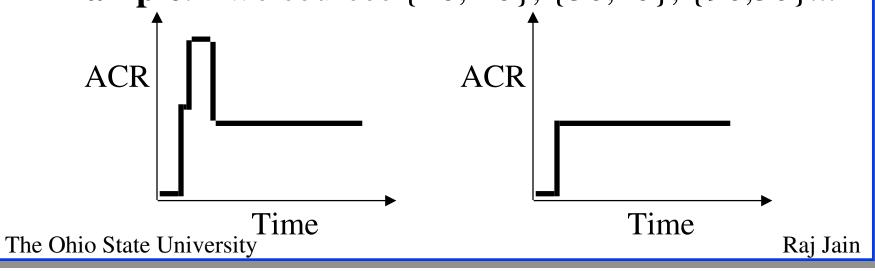
The Ohio State University


1. Innovation: Use forward CCR

- **Problem:** CCR in backward direction is too old
- Solution: Read CCR in forward RM cells.
 Give feedback in backward RM cells.
- **Effect**: Shorter control loop for active VCs
 - \Rightarrow Faster convergence

2. Same Feedback in One Interval

- **Problem**: Oscillations for high-rate sources
- Reason: Mismatched control and monitoring intervals
 Control Interval = Inter-RM cell time
 - □ Monitoring Interval = Averaging interval
- □ Solution: Do not change feedback in one averaging



3. Innovation: Fair Share First

- **Problem**: Transient overloads at state changes
- Solution: Source below Fair Share go only up to fair share first.

IF CCR < Fair Share and $ER_{Calculated} >=$ Fair Share THEN $ER_{Calculated} =$ Fair Share

Example: Two sources {10, 10}, {50,10}, {90,50}...

4. Per-VC Rate Measurement

- Problem: Some VCs are bottlenecked at the source CCR does not reflect source rate
- **Solution**:
 - □ Count number of cells in each VC
 - Source Rate = Number of Cells Seen/Averaging Interval
 - □ This VC's Share = Source Rate/Overload
- □ Advantage:
 - □ Also handles sources not using their allocation. \Rightarrow Switch based "use it or lose it"

The Ohio State University

5. Time + Count Based Averaging

- □ Problem: Averaging over a fixed interval
 ⇒ Sudden overload can cause queue build up
- □ Solution: Average over *t* ms or *n* cells whichever happens first.

12

6. Innovation: ERICA with VBR

- Monitor VBR usage
- □ ABR capacity = Target Rate VBR input rate
- NOTE: Target utilization applies to total link load ABR capacity = Target Utilization × Link Rate
 - VBR output rate


and not

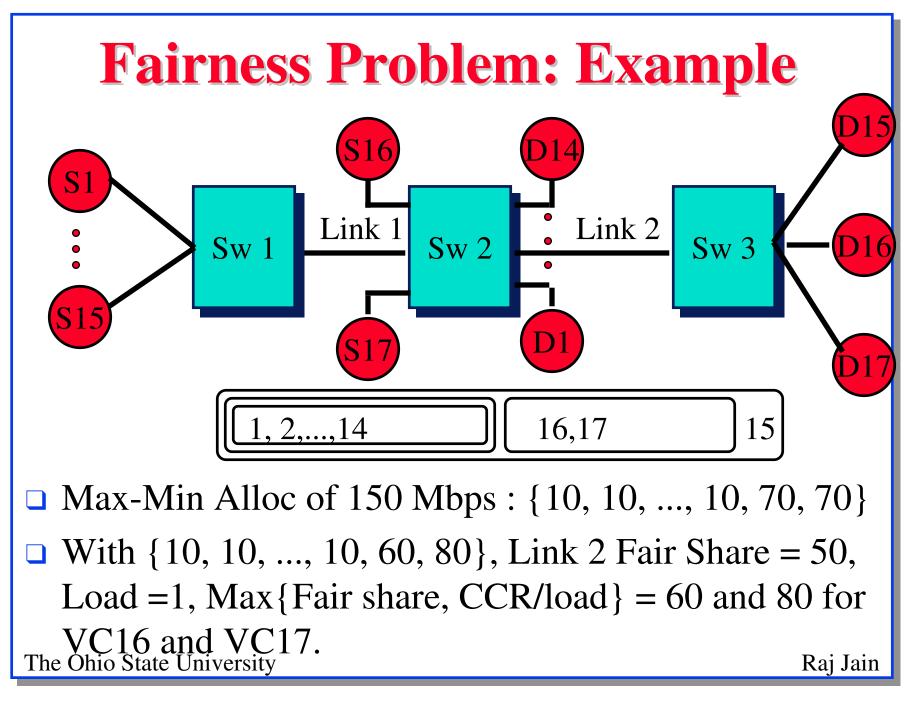
ABR capacity = Target Utilization ×(Link Rate

- VBR output rate)
- ⇒ VBR Output rate < Target utilization

Out-Of Phase Effect

- Bursty load and backward RM (BRM) cells are often out of phase.
- When there is load in the forward direction, there are no BRMs.
- By the time the switch sees BRMs, there is no load in the forward direction.
- The above effect disappears when the bursts become larger than RTT

7. Innovation: Bi-directional Counting


- Problem: Data cells or RM cells may not be seen in one direction. Resulting in undercount and overallocation.
- Solution: A VC is active if any of the following holds:
 - Data cells seen in the forward direction in the last averaging interval
 - Data cells seen in the forward direction in this averaging interval
 - □ BRMs seen in the reverse direction

The Ohio State University

Unfairness in ERICA

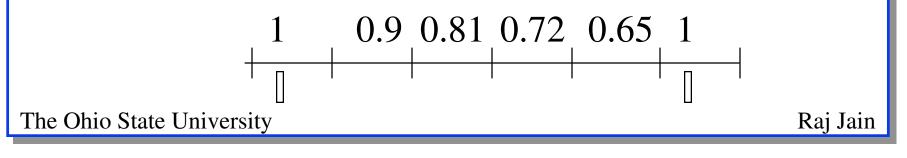
- $\Box ER_{Calculated} = Max{Fair Share, CCR/overload}$
- ERICA becomes unfair if ALL of the following conditions hold true:
 - \Box Overload = 1
 - □ Some VCs are bottlenecked at other switches
 - All VCs that are not bottlenecked at other switches have a CCR greater than the fair share
- Under the above condition, the CCRs do not change at all. The allocation stabilizes. But the stable operating point may not be max-min fair.

The Ohio State University

8. Innovation: Fairness Fix

Solution:

- All VCs that are bottlenecked at this switch must get the same allocation = maximum allocation
- □ Remember maximum ER in the previous interval


 IF overload ≤ 1+δ THEN ER_{Calculated} = Max{Fair Share, CCR/Overload, Max_ER}
 ELSE ER_{Calculated} = Max{Fair Share, CCR/Overload}

Fairness Fix (Cont)

- **Example**: On Link 2, Fair Share = 50
 - □ {10, 10, ..., 10, 60, 80}, Load = 1, ER=10,80,80
 - □ {10, 10, ..., 10, 80, 80}, Load = 17/15, ER=10, 70.6, 70.6
 - □ {10, 10, ..., 10, 70.6, 70.6}, Load = 1.008, ER=10, 70.03, 70.03

9. Averaging of Number of Sources

- □ Not all active sources seen in every interval
 - \Rightarrow Fair share overestimated
 - \Rightarrow High Allocation
- □ Solution:
 - □ Source activity lies between 0 and 1
 - \Box Activity = 1 if the source is seen
 - \Box Activity decays by a factor α , every interval the source is not seen

10. Boundary Cases					
ABR Capacity	Input Rate	Over- load		CCR/ Overload	Feedback
Zero	Non- zero	∞	Zero	Zero	Zero
Non- zero	Zero	∞	C/N	Zero	C/N
Non- zero	Non- zero	I/C	C/N	CCR*C/I	Max(CCR*C/I ,C/N)
Zero	Zero	∞	Zero	Zero	Zero

 $\Box If N < 1 then N = 1$

□ Here, I = input rate, C = Capacity, N =# of Srcs

The Ohio State University

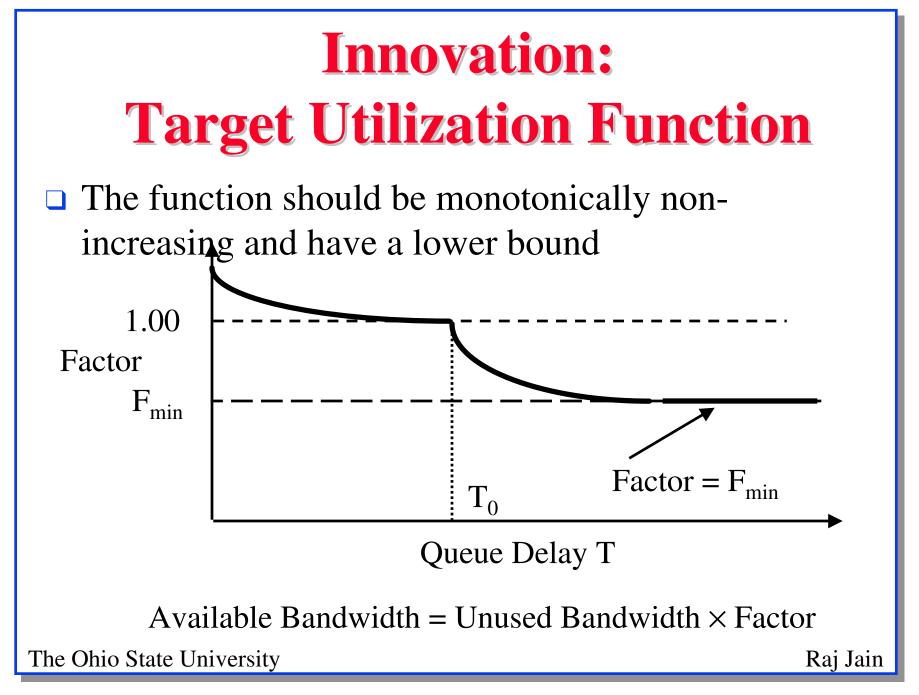
11. Averaging of Load Factor

- □ Load Factor = Input Rate / ABR Capacity
- Load factor is a ratio
 - Both numerator and denominator are variable
 - \Rightarrow Average numerator and denominator separately
- □ Input rate itself is a ratio
 - \Rightarrow Add number of cells seen and time separately
- □ Similarly, for ABR Capacity

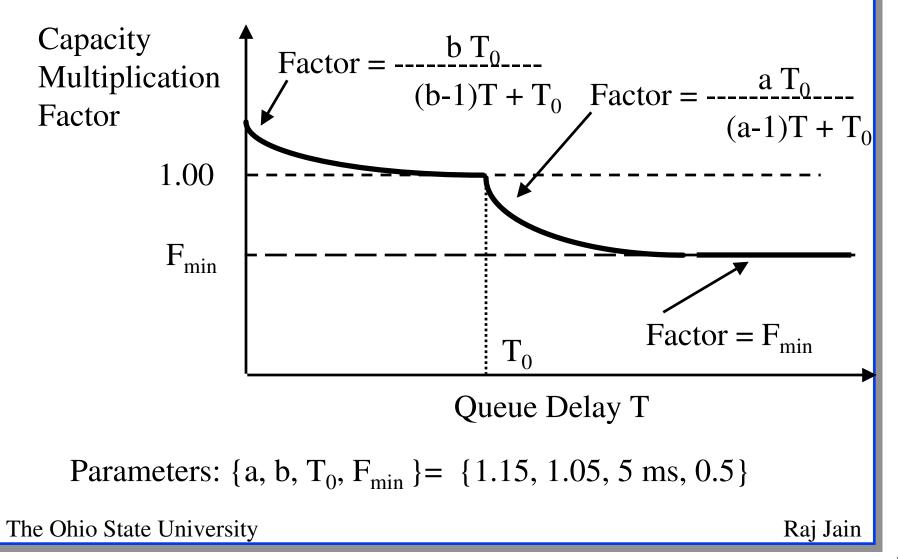
Is Low Queue Length Good?

Queue length is close to 1.

Not good if bandwidth becomes available suddenly You can't use BECN to ask sources to increase Low rate sources may have long inter-RM cell times


- Link utilization is 90% or below
 May not be acceptable for high-cost WAN links.
- □ Very high queue length is also bad.

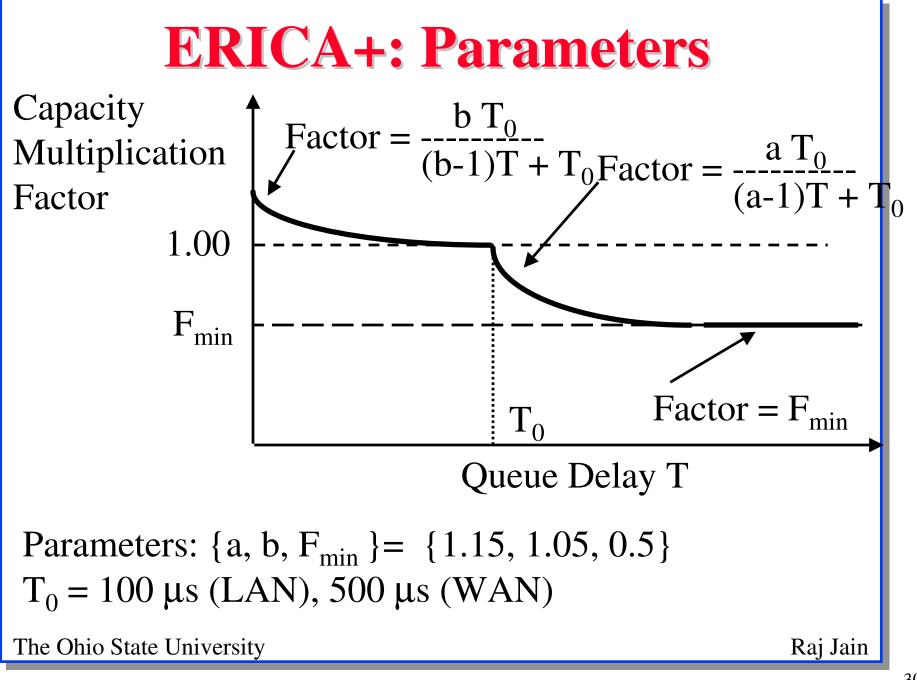
12. Innovation: ERICA with Queue Control

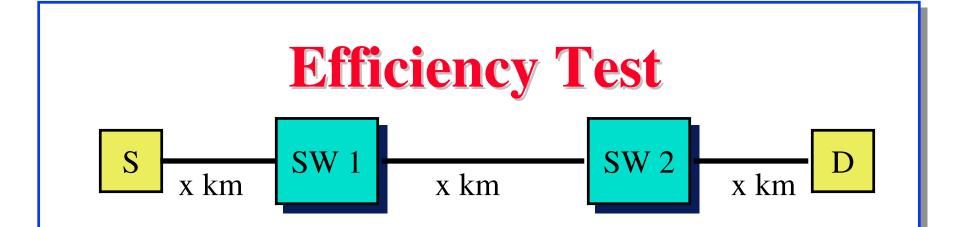

- □ Target utilization is dynamically changed.
- \Box During steady state: Target utilization = 100%
- □ During overload the target may be low, e.g., 80%
- □ During underload the target may be high, e.g., 110%
- Available Bandwidth = fn(Unused bandwidth, Queue length, queue length goal)
- □ Unused bandwidth = Link Rate VBR output rate
- □ Rest is similar to ERICA

Innovation: Use Queue Delay Threshold

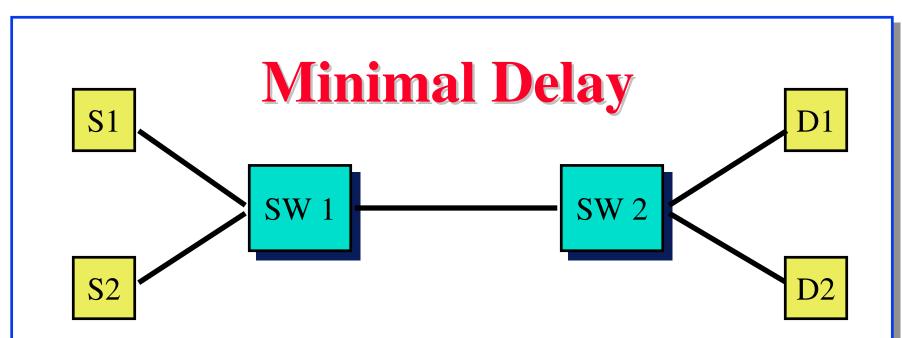
- Since available bandwidth (AB) varies dynamically, a queue of 30 may be too big when AB is 1 Mbps but too little when AB is 100 Mbps.
- Use queue delay instead of queue length
 Queue Delay = Queue length /Available bandwidth
- Available Bandwidth = fn(Unused bandwidth, Queue length, queue delay goal)

Sample Queue Control Function 1

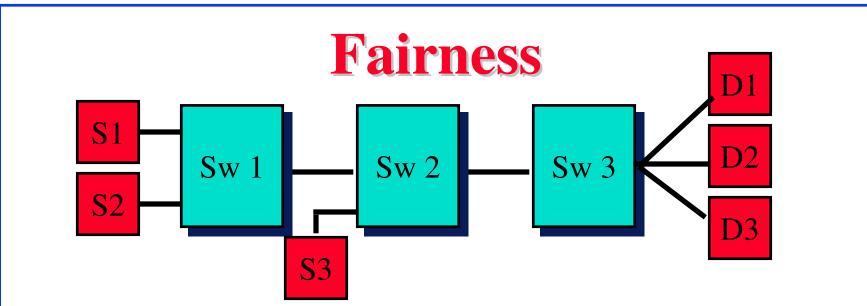



Advantage of Q-Control

- □ Can tolerate errors in measurements:
 - □ Number of active sources
 - □ VBR load
 - □ ABR input rate
- □ Allows n-VC TCP operation with buffers ≈ 1 × RTT
- □ 100% Utilization

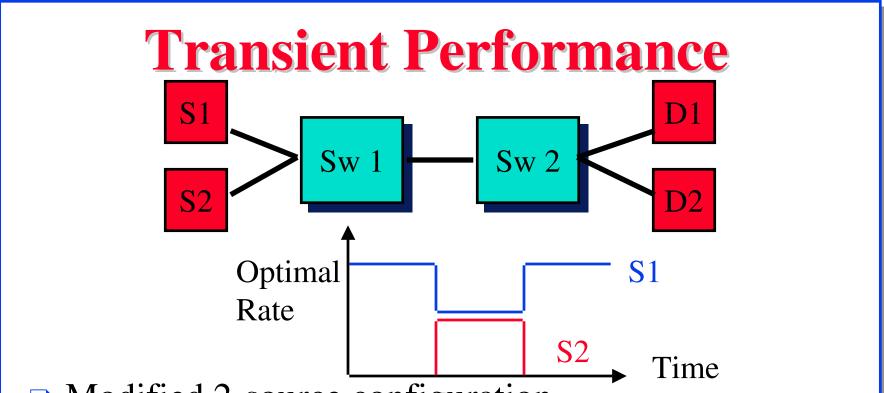

Simulation Parameters

- □ All links have a bandwidth of 155.52 Mbps
- All LAN links are 1 Km long and all WAN links are 1000 Km long
- □ All VCs are bi-directional
- □ RIF =1
- $\Box TBE = Large \Rightarrow Disable rule 6$
- □ Target utilization = 95% (LAN), 90% (WAN)
- □ All sources, including VBR are deterministic
- Averaging interval =Min{50 cells, 1 ms} for LANs and Min{100 cells, 1 ms} for WANs The Ohio State University
 Raj Jain



- Single source configuration:
 Filters out many non-working schemes
- ERICA achieves efficiency
- □ No rate oscillations in the steady state
- Utilization is at the target (95%)
- With ERICA+, utilization is 100% with no oscillations and minimal queues

- **Two source configuration**
- For ERICA, convergence is fast, the queue lengths (delays) are small
- □ For ERICA+, convergence is fast, the queue length reaches target, no rate oscillations, and 100% link utilization



- □ Parking lot configuration
- □ Max-min allocation = 1/n for all VCs
- □ ERICA and ERICA+ allocate the max-min share
- Parking lot configuration is not sufficient to demonstrate max-min fairness
- Original ERICA unfair in certain situations, e.g., some VCs bottlenecked at low rates The Ohio State University
 Raj Jain

33

Fairness (Cont)

- Modified ERICA is fair
- Curves of number of cells received at the destination vs time have the same slope
- Transient response is slightly worse but the steady state performance is still good

- □ Modified 2-source configuration,
- □ Source 2 is active from 10 ms to 20 ms only
- Also illustrates the effect of the "fair share first" algorithm
- □ ERICA exhibits good transient response

The Ohio State University

Adaptation to Variable Capacity

- □ VBR source with peak rate of 124.42 Mbps (80%)
- □ VBR source is
 - on/off for 1 ms/1 ms (high frequency) on/off for 20 ms/20 ms (low frequency)
- □ Fast response to VBR load
- Utilization drops reflect feedback delay
- Spikes in the queue lengths also reflect the feedback delay, but the queues are rapidly drained
- □ ERICA+ adapts rapidly to changing background
- Target queue goal is not reached due to the high variance

The Ohio State University

Bursty Traffic

- □ One persistent + One bursty (request-response) VC
- \Box Request Size = 16 cells
- Response Size = 128 (small), 1024 (medium), and 6144 (large) cells
- □ Performance of the reverse (response) shown
- ERICA can adapt to small and medium bursts of data, and the queue lengths are constrained
- With a target utilization of 90%, not enough capacity to drain large bursts of data from the switch queues before the next burst is received

The Ohio State University

Bursty Traffic (Cont)

- Solution 1: Smaller target utilization
- Solution 2: Bi-directional counting limits the queue sizes for large bursts (out-of-phase effect)
- □ Solution 3: Averaging the number of active sources
- Solution 4: ERICA+ can adapt to bursty traffic better than ERICA
- With ERICA+ and small burst sizes, the queue delay is below the target
- Even with large burst sizes, averaging not required for ERICA+

The Ohio State University

ACR Retention

- □ ACR Retention = Sources cannot use their ACR
- □ If they suddenly use ACR \Rightarrow Overload
- □ Larger number of such VCs \Rightarrow Sudden overload
- □ 10 Sources limited to 10 Mbps for first 100 ms only
- ERICA rapidly detects the overload and gives the appropriate feedback
- Per-VC CCR measurement option can mitigate the overload situation

- □ Efficiency and delay requirements
- **G** Fairness
- □ Transient and steady state performance
- Scalability
- Adaptation to variable capacity and various source traffic models The Ohio State University
 Raj Jain