95-1344R1 New Source Rules and Satellite Links

Raj Jain, Shiv Kalyanaraman, Fang Lu, Sonia Fahmy The Ohio State University

Saragur M. Srinidhi

Sterling Software and NASA Lewis Research Center

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Raj Jain

Effect of XRM

- It was shown in August [1]: If XRM is low, rule 6 is triggered repeatedly leading to oscillations and a net throughput of 50 Mbps on a 155 Mpbs (or even higher speed) link
- Conclusion: XRM width should be increased.
- [1] AF-TM 95-0972R1, "Parameter Values for Satellite Links," August 1995.
- □ Effect of CIF
- Also in August meeting: XRM signalling was replaced by CIF signalling.
- $\square XRM = Min\{CIF/Nrm, PCR*RTT/Nrm\}$
- Goal: To verify that satellite links can be efficiently used under the new rules.

The Ohio State University

Raj Jain

Problem

- Previously, XRM directly controlled the oscillation. User could guarantee no-oscillation by setting Xrm to 6144 or higher
- $\square XRM = 6144$

 \Rightarrow CIF = XRM*NRM = 196608

- Even with CIF=196608, XRM=6144, oscillations can be caused by TOF decreases
- The problem happens only if the VC is setup during congested period

- □ All links 155 Mbps, $ICR = 0.9 \times PCR$
- Goal: If the scheme has problem with single-source, it will have problems with more complex configurations

Simulation Parameters

❑ Source: Parameters selected to maximize ACR
Nrm = 32
AIRF=1 ⇒ AIR = PCR/Nrm ⇒ ACR is not limited by AIR

RDF=512 cells

- {TDFF, PNI} = {1/8, 0} or {0, 1} \Rightarrow Rule 5 on or off CIF = 196608
- RTT = Propagation delay \times multipliers of 1, 10 or 110 XDF = 1/2
- **Traffic: Bidirectional**

Switch:

Target Utilization = 90%

Averaging interval = min{ $30 \text{ cells}, 200 \text{ } \mu s$ }

 XRM should be directly negotiated or its dependence on RTT should be removed.