
96-0517R1 Buffer Requirements for TCP over ABR

Raj Jain, Shiv Kalyanaraman, Rohit Goyal, Sonia Fahmy The Ohio State University

Saragur M. Srinidhi

Sterling Software and NASA Lewis Research Center

Raj Jain is now at Washington University in Saint Louis, jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u>

The Ohio State University

- Seven Facts about TCP
- Simulation Results
 ABR + Infinite buffers + 100 ms granularity
 + WAN and LAN
- Effect of RTT, Feedback delay, VBR, Switch scheme, parameters

Seven Facts about TCP

- **TCP** successfully avoids congestion collapse.
- **TCP** can automatically fill any available capacity.
- TCP performs best when there is NO packet loss.
 Even a single packet loss can reduce throughput considerably.
- Slow start limits the packet loss but loses considerable time.
 With TCP, you may not lose too many packets but you loose time.
- Bursty losses cause more throughput degradation than isolated losses.
- Fast retransmit/recovery helps in isolated losses but not in bursty losses.
- □ Timer granularity is the key parameter in determining time lost.

The Ohio State University

Three Facts about ATM

These apply to ABR as well as UBR:

- Cell loss rate (CLR) gives no indication of throughput loss.
 1% cell loss can cause 50% throughput loss.
 10% cell loss may result in only 10% throughput loss.
- Dropping all cells of a packet is better than dropping randomly (EPD).
- Never drop the EOM cell of a packet. It results in two packet losses.

Previous Results About ABR

- □ The buffers can not be allocated based on TBE
- □ Maximum queue length and TBE have little/no relationship

The Ohio State University

Are One RTT Buffers Sufficient?

- □ Answer 1: Yes. In Many cases.
- □ Example: Small number of sources. No VBR.
- Answer 2: No. In many cases.
- □ Example: Large number of sources. Even w/o VBR.

# of		Feedback	Maximum	Total	Effici-	Fair-
Sources	RTT	Delay	Queue	Throughput	ency	ness
5	30	10	10597=0.95*RTT	104.89	83.78	1.0000
10	30	10	14460=1.31*RTT	105.84	84.54	1.0000
15	30	10	15073=1.36*RTT	107.13	85.57	1.0000

Key Factors

- Switch Algorithm: Transient Response (settling) time
- □ Round Trip Time (RTT)
- □ Feedback Delay (bottleneck to source)
- Switch Algorithm *Parameters*:
 - □ Averaging Interval
 - **□** Target Utilization
 - □ ERICA+queue control
- □ Presence and characteristics of background VBR
- □ Number of VCs
- **TCP** Receiver window size

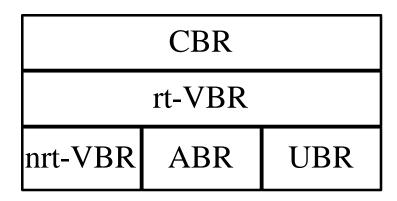
Observations About ABR

□ ABR performance depends heavily upon the switch algorithm.

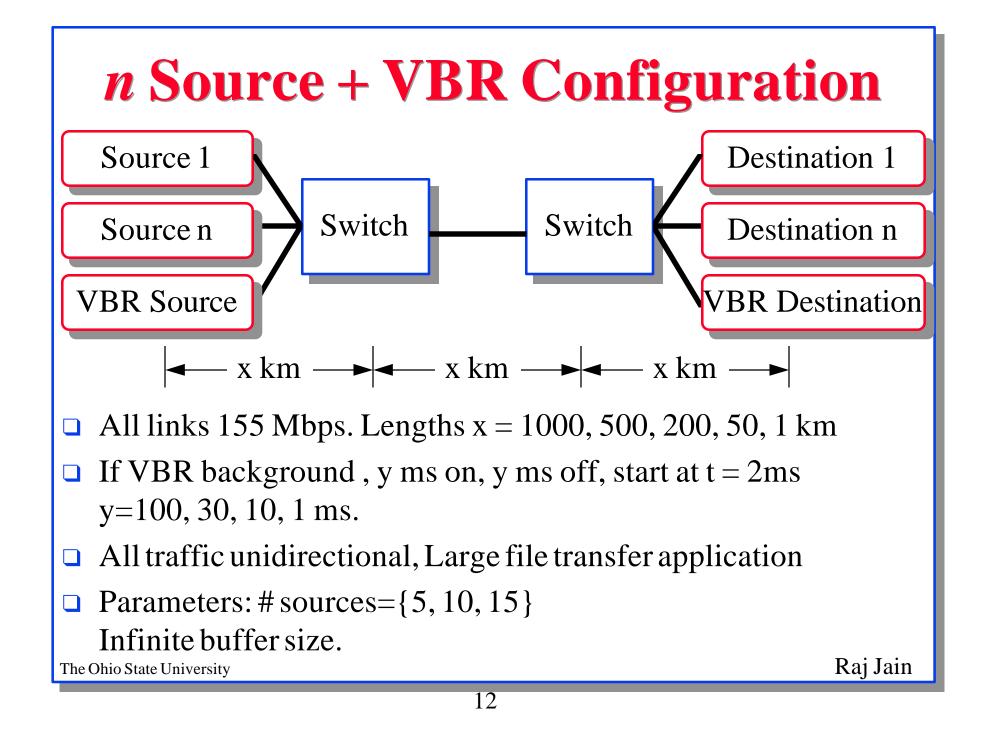
Following statements are based on our *modified ERICA* switch algorithm.

(For ERICA, see http://www.cis.ohio-state.edu/~jain/)

- □ No cell loss for *TCP* if switch has Buffers = $4 \times RTT$.
- □ No loss for any number of TCP sources w $4 \times RTT$ buffers.
- □ No loss even with VBR. W/o VBR, $3 \times RTT$ buffers will do.
- **Under** many circumstances, $1 \times RTT$ buffers may do.
- Drop policies improve throughput but are not critical.
- □ In general:


 $Qmax = a \times RTT + b \times Averaging Interval + c \times Feedback$ $delay + d \times VBR$

The Ohio State University


Modified ERICA

- **C** Eliminates many short spikes
- □ Provides fast response even if the link is underutilized
- Correctly counts bursty sources
- Allows multiclass scheduling
- Achieves better fairness in many cases (Some flows bottlenecked earlier, Other flows with ACR≥FS, Overload=1)

Multiclass Scheduling

- □ Ensures *no-starvation* for all classes even under overload.
- \Box Each class has an *allocation* = Guaranteed under overload
- □ Some classes need minimum delay \Rightarrow have *priority*.
- □ Some classes are greedy: They will send more than allocated and will want to use all left-over. *No left-over* capacity.
- □ Left-over capacity must be *fairly* allocated.
- **ERICA** scheduler achieves all these goals.

Simulation Parameters

Source: Parameters selected to maximize ACR
 TBE = 512

```
CDF(XDF) = 0.5
```

```
ICR = 10 Mbps
```

```
CRM (Xrm)= TBE/Nrm
```

```
ADTF = 0.5 \text{ sec}
```

PCR = 155.52 Mbps, MCR = 0, RIF (AIR) = 1,

Nrm = 32, Mrm = 2, RDF = 1/512, Trm =100ms, TCR = 10 c/s

□ Traffic: TCP/IP with Infinite source application

```
    Switch: ERICA modified, ERICA+
Target Utilization = 90% and other values
Averaging interval = min{100 cells, 1000 µs} and other values
```

TCP/IP Parameters

- $\Box Maximum Segment Size = 512 bytes$
- \Box Timer granularity = 100 ms
- □ No TCP processing time
- □ Max window = 16×64 kB, One-way delay = 15 ms = 291 kB
- □ No delay ack timer
- □ Fast retransmit/recovery or Early packet drop (EPD) have no impact on these results since there is no loss.

Performance Metrics

- Efficiency = Sum of throughputs/Maximum possible throughput
 - \Box Maximum Segment Size = 512 data
 - = 512 data + 20 TCP + 20 IP + 8 LLC + 8 AAL5
 - = 12 cells = 12*53 bytes = 636 bytes in ATM Layer
 - \Box Maximum possible throughput = 512/636 = 80.5%
 - = 125.2 Mbps on a 155.52 Mbps link*

$$(\Sigma x_i)^2$$

□ Fairness =

$$n \sum x_i^2$$

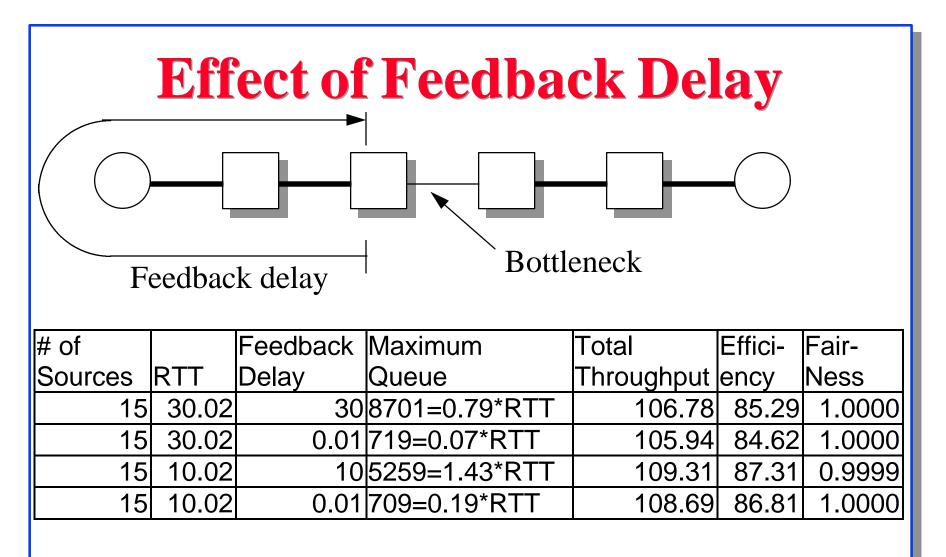
Where x_i = throughput of the *i*th TCP source

*ABR loses another 6% for RM cells.

Effect of RTT

# of		Feedback	Maximum	Total	Effici-	Fair-
Sources	RTT	Delay	Queue	Throughput	ency	Ness
15	15	5	12008=2.18*RTT	108.00	86.26	0.9995
15	6	2	6223=2.82*RTT	109.99	87.85	0.9999
15	1.5	0.5	1596=2.89*RTT	110.56	88.31	1.0000

Maximum queue length approaches 3*RTT, particularly if RTT is medium


The Ohio State University

TCP/IP over ABR in LANs

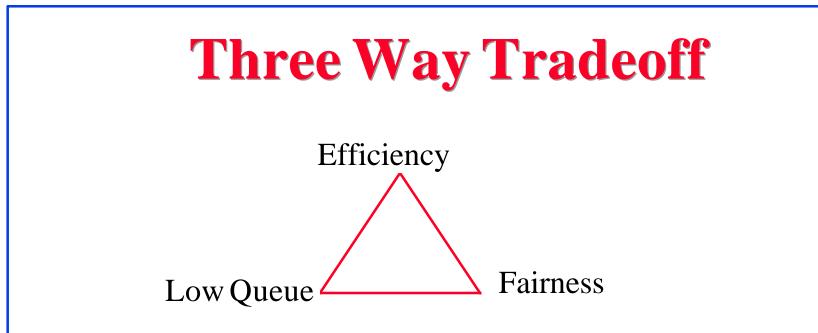
- Given a switch algorithm (modified ERICA):
 Qmax = a × RTT + b × Averaging Interval + c × Feedback
 delay + d × VBR
- □ In WANs: RTT is the dominant factor
- In LANs: RTT and Feedback delays are small, averaging interval dominates

Averaging		F/b	Maximum	Total	Effici-	Fair-
Interval	RTT	Delay	Queue	Thruput	ency	Ness
10ms,500cells	1.5	0.5	2511=3*RTT	109.46	87.43	1.00
			+1.71*AI			
10ms,1000cells	1.5	0.5	2891=3*RTT	109.23	87.24	1.00
			+1.24*AI			
10ms,500cells	0.03	0.01	2253=4.5*Al	109.34	87.33	1.00
10ms,1000cells	0.03	0.01	3597=3.6*AI	109.81	87.71	0.99

The Ohio State University

 $\Box Smaller feedback delay \Rightarrow Smaller queues$

The Ohio State University


High Frequency VBR: Problem

□ Limit of 1 × RTT due to VBR is good for large VBR cycle times.

TCP and ABR get enough time to adjust.

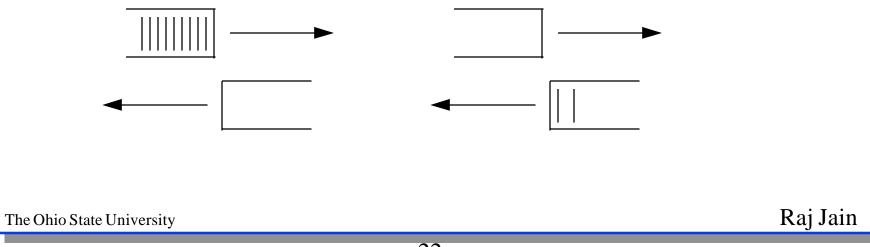
 □ Faster VBR causes faster variations in available capacity. Neither TCP nor Switch algorithm may have time to adjust ⇒ Can lead to instability at high utilization levels.

VBR		F/b	Maximum	Total	Effici-	Fair-
On/Off	RTT	Delay	Queue	Throughput	ency	Ness
30 ms	30	10	12359=1.12*RTT	69.60	92.65	0.9967
100 ms	30	10	13073=1.18*RTT	63.85	85.00	0.9987
10 ms	30	10	diverges			
1 ms	30	10	diverges			

- **D** Buffers vs Efficiency (Utilization) vs Fairness
- □ It is possible to have lower queues (lower buffer required) if the target utilization is kept low.

High Frequency VBR: Solution

□ ERICA with target at 70%


ERICA+ with queue delay of 0.5 ms
 ERICA+ gives high efficiency and stability
 Automatically compensates for measurement errors in input rate, available capacity, or number of active sources

		F/b	Maximum	Total	Effici-	Fair-
Scheme	RTT	Delay	Queue	Throughput	ency	Ness
ERICA+	30	10	5435=0.49*RTT	69.22	92.15	0.9827
Target=70%	30	10	12359=1.12*RTT	50.52	67.25	0.9958

The Ohio State University

Out-Of Phase Effect

- □ Bursty load and backward RM cells are often out of phase.
- When there is load in the forward direction, there are no BRMs.
- By the time the switch sees BRMs, there is no load in the forward direction.
- □ The above effect disappears when the bursts become larger than RTT

Flocking Effect

- □ All cells of a VC are often seen together.
- □ There is clustering of sources.
- □ Not all sources are seen all the time.

- Performance of ABR depends on RTT, the switch algorithm and its parameters
- □ For modified ERICA, 4*RTT buffers are sufficient
- □ For ERICA+, queue can be controlled to any desired level
- □ There is a efficiency, buffer size, and fairness tradeoff

REFERENCES

- All our past ATM forum contributions, papers and presentations can be obtained on-line at http://www.cis.ohio-state.edu/~jain/
- [1] R. Jain, S. Kalyanaraman, R. Viswanathan, R. Goyal, "A Sample Switch Algorithm," ATM Forum/95-0178R1, February 1995.
- [2] R. Jain, S.Kalyanaraman, R. Goyal, S.Fahmy, F. Lu, S.M. Srinidhi, "TCP/IP over ABR(Was: TBE and TCP/IP Traffic)," ATM Forum/96-0177R1
- [3] S. Kalyanaraman, R. Jain, S.Fahmy, R. Goyal, F.Lu, S.M. Srinidhi, "Performance of TCP/IP over ABR," submitted to Globecom'96.