ATM_Forum/98-0830 Packing Density of Voice Trunking using AAL2

Chunlei Liu, Sohail Munir, Raj Jain,

The Ohio State University

Sudhir Dixit, Nokia Research Center

Con <u>http</u> <u>http://www.cse.wustl.edu/~jain/</u> U <u>http://www.cse.wustl.edu/~jain/</u> <u>http://www.cse.wustl.edu/~jain/</u>

The Ohio State University

- □ AAL2 Voice Trunking and Timer_CU
- Voice Model and Packet Arrival Pattern
- Markov Chain Analysis
- **Comparison with Simulation Results**
- Conclusion

□ Voice sources send G.723.1 packets to AAL2.

- AAL2 packs voice packets into cells and send them to the switch. Destination AAL2 will unpack the cell and dispatch each packet to its destination.
- □ AAL2 keeps a Timer_CU to avoid prolonged delay.

The Ohio State University

□ Silence: Exponential distribution, mean = 650 ms

- □ This is the arrival pattern from one source.
- □ Voice sources are independent.
- \Box R_i = Probability of receiving i packets within τ ms.
- □ From packet arrival pattern, we can calculate R_0 , R_1 , R_{2+}

Markov Chain Analysis

- The packing process can be described with a Markov chain.
- □ Let r_n be the remainder length from cell *n*-1.
- □ Then r_{n+1} depends on r_n and the number of packets received in τ ms.
- □ The transition matrix *P* depends on the packet receiving probabilities R_0 , R_1 , R_{2+} .

Analysis Results

- \square $\pi = \pi P$ gives the stationary distribution π , the long run probability distribution of remainder length.
- □ From π and R_0 , R_1 , R_{2+} , we can calculate the average number of bytes in a cell, and then the average packing density.

Simulation

- □ To verify the analysis, we wrote a simulation program to implement the AAL2 packing process.
- □ The simulation generates talk spurts and silence intervals according to the ON-OFF model.
- □ Assume G.723.1 is used for voice encoding.
- Actual density is computed from the total number of voice bytes and the number of cells sent.
- □ The simulation results are summarized as follows.

Simulation Results					
τ	celles	Recv 0	Recv 1	Recv 2	Density %
0.5	5621	4079	1246	296	46.93
1	5028	2339	1787	902	56.00
2	4286	949	1462	1875	64.78
4	3705	154	626	2925	72.43
6	3587	26	206	3355	75.42
8	3470	8	66	3396	76.54
10	3716	0	10	3706	77.05
12	3779	0	0	3779	77.12

Conclusion

- Packing density can be calculated from the number of voice sources and the given Timer_CU value.
- The simulation results match the analytical results perfectly.
- Given the number of voice sources and the desired link efficiency, we can calculate the appropriate Timer_CU value.
- The next slide gives the Timer_CU values to achieve 90% and 95% of the maximum link efficiency for different number of voice sources.

The Ohio State University

Timer_CU values for Different Number of Users

- The Timer_CU value can significantly affect link efficiency.
- It should be set according to the number of sources and delay requirement.
- This contribution gives an algorithm to calculate a Timer_CU value to achieve desired link efficiency.

The Ohio State University