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       Abstract:

       We study TCP throughput and fairness over UBR for several
       buffer and maximum window sizes. TCP performs best when 
       there is no loss. The performance is severely degraded under 
       loss (regardless of UBR or ABR).  Therefore, we study the switch
       buffer requirements for zero loss. The required buffers are 
       found to be the function of number of VCs and their round-trip
       times.
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       INTRODUCTION
       ------------

       TCP congestion control mechanisms effectively recover from
       segment loss and also avoid congestion collapse. It
       is useful to study the performance of TCP over the Unspecified
       Bit Rate (UBR) service provided by ATM networks. UBR provides no
       congestion control mechanisms. Enhancements have been proposed to
       UBR that propose intelligent cell drop policies at the switches.

       The purpose of this and our subsequent contributions on this
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       topic is to characterize the performance of TCP over UBR and its
       various enhancements.  This particular contribution concentrates
       on the effect TCP receiver window, switch buffer size, and cell
       drop policy on TCP performance.

       In our other contributions [8,10] and papers [9], we have studied
       the performance of TCP/IP over ABR. In [10],  we characterize ABR
       buffer requirements with TCP sources.

       SOME OBSERVATIONS ABOUT TCP
       ---------------------------

       TCP congestion control mechanisms consist of a "slow start" and
       "congestion avoidance". Slow start, or exponential rise phase
       is triggered whenever a TCP source detects network congestion 
       indicated by the triggering of the retransmission timout. Slow 
       start results in the reduction of the TCP congestion window to 
       one segment. The congestion window then doubles every round trip 
       until the "congestion avoidance" or linear rise phase is reached.
       During this phase, the TCP source increases the congestion
       window by one segment every round trip. As a result, if the TCP
       congestion window is allowed to increase, TCP can potentially use
       all available network capacity.

       The TCP congestion control mechanisms successfully avoid
       congestion collapse.  Slow start empties the TCP pipe every time
       it detects loss. Although slow start limits the packet loss, it
       loses considerable time whenever there is loss. It takes several
       roundtrips for  TCP to return to its optimal operating point. As
       a result TCP throughput decreases considerably when segments are
       dropped. TCP performance is optimal when there is zero segment
       loss. Even a single segment loss can decrease throughput
       considerably.

       TCP Reno includes the Fast Retransmit and Fast Recovery
       algorithms that improve TCP performance when a single segment is
       lost. However, in high bandwidth links, network congestion
       results in several dropped segments. In this case, fast
       retransmit and recovery are not able to recover from the loss and
       slow start is triggered. Fast retransmit and recovery are
       effective in single packet losses typically due to error. In our
       experiments, all losses are due to congestion and result in
       multple segments being dropped. Therefore, we first study 
       TCP without fast retransmit and recovery running on UBR.

       TCP begins slow start whenever the retransmission timer is
       triggered. The accuracy of this timout depends on the timer
       granularity used in the TCP implementation. Most current TCP
       implementations measure round-trip delays using a granularity of
       100 or 500 ms. Larger granularity means that the sources have to
       wait longer before timing out and recovering from a lost packet.
       All our simulations use a timer granularity of 100 ms.

       PARAMETERS:
       ----------

       TCP MAX.WIN
       -----------

       TCP maximum window size plays an important role in its congestion
       dynamics. The default maximum congestion window is 65536 bytes.
       However, in high delay links, this window is too small to achieve
       full throughput. On the other hand, having  maximum window above



       the RTT is not fruitful, since, at any time, only 1 RTT worth of
       segments can be in the TCP pipe.  The maximum window size determines
       the amount of data that can be present in the TCP pipe. As a result,
       this parameter determines the storage capacity needed in the network.
       We experiment with various values of the TCP maximum window size.

       SWITCH BUFFER
       -------------

       UBR provides no explicit feedback to its sources. Multiple TCP
       sources may dump a window of segment each on any UBR switch. As a
       result, the switch may need to store the cells from segments of
       all the TCP windows. Based on the MAX.WIN parameter used, we use
       various buffer sizes in our simulations.

       The following variations of MAX.WIN and switch buffer sizes were
       simulated:

       Set 1: These consist of Switch buffers smaller than 1 RTT and
              relatively large TCP maximum windows.
              a. TCP.MAX.WIN = 600000 bytes, Switch Buffer = 4096 cells
              b. TCP.MAX.WIN = 600000 bytes, Switch Buffer = 8192 cells

       Set 2: These consist of Switch Buffers = sum of all TCP maximum
              windows for five sources. The window sizes correspond to
              being less than, equal to and greater than 1 RTT.
              a. TCP.MAX.WIN = 65536  bytes, Switch Buffer = 330000 cells
              b. TCP.MAX.WIN = 120000 bytes, Switch Buffer = 12000  cells
              c. TCP.MAX.WIN = 360000 bytes, Switch Buffer = 36000  cells

       Set 3: Full factorial of:
              TCP.MAX.WIN = 600000, 18000000 bytes
              Switch Buffer = 12000, 36000 cells
       Here the switch buffers are some multiple (less than the number
       of sources) of the TCP maximum windows.

       CELL DROP POLICY
       ----------------

       In its simplest form, a switch could implement a tail drop policy
       in which all cells arriving after the buffers are full are
       dropped.  This is expected to result in excessive wasted
       bandwidth. If cells are dropped from multiple TCP packets, then
       all these packets need to be retransmitted by the source TCP.
       Early Packet Discard (EPD) has been suggested to remedy the
       problems caused by tail drop.  EPD tries to discard cells from
       the same TCP packet during congestion. A threshold is set at the
       switches, and when the switch queue length exceeds this
       threshold, cells from any new packets are dropped. The EPD
       algorithm is the one suggested by [3,7]. However, EPD makes no
       attempt at achieving fairness among different VC's.  It is also
       not known how to choose the threshold for the switch buffer. The
       choice of EPD threshold value may effect performance.  We
       experiment with different buffer sizes and EPD thresholds.

       CONFIGURATION
       -------------

       Our simulations use a five source configuration as illustrated
       below.

       S1----|                         |---->D1
             |                         |
       S2----|                         |---->D2



             |                         |
       S3----|-->Sw1---------->Sw2---->|---->D3
             |                         |
       S4----|                         |---->D4
             |                         |
       S5----|                         |---->D5

       * All link delays are 5 milliseconds. Thus, the Round Trip Time
         due to the propagation delay is 30 ms.

       * All link bandwidths are 155.52 Mbps

       * PCR = 155.52 Mbps

       * All sources are infinite TCP sources. TCP layer always has a
       packet to send as long as permitted by the TCP window. The actual
       traffic as seen by the ATM layer is bursty.

       * The traffic is unidirectional. Only the sources send data. The
         destination sends only acks.

       * TCP Fast Retransmit and Recovery are not implemented.

       * TCP segment size = 512 bytes.

       * TCP timer granularity = 100ms.

       * TCP maximum window size: parameter.

       * TCP delay ack timer is NOT set. Segments are acked as soon are
       they are
         received.

       * Duration of simulation runs: 2 seconds.

       METRICS:
       -------

       We measure performance based on the throughput as follows:

       TCP throughput: This is measured at the destination TCP layer.
       The destination measures throughput of all the segments received
       in sequence. If a segment is received out of sequence, (due to
       error/loss of previous segments) it is not included in the
       throughput measurement until all the missing segments are
       received.

       We can also plot TCP sequence numbers measured at the source TCP
       layer.

       SIMULATION RESULTS
       ------------------

       The simulation results are summarized in the table below.

       Set 1:
       |--------|--------|---------------------------------------|---------|
       | Buffer | MAX.WIN|       Throughput  Mbps                |         |
       | cells  | bytes  |  D1      D2      D3      D4      D5   |  Total  |
       |--------|--------|---------------------------------------|---------|
       | 4096   | 600000 |5.56823 35.6997 2.62913 4.49441 4.13301| 52.52448|



       | 8192   | 600000 |6.21502 4.28641 5.84917 3.2953  7.06766| 26.71356|
       |--------|--------|---------------------------------------|---------|

       Set 2: 
       |--------|--------|---------------------------------------|---------|
       | Buffer | MAX.WIN|       Throughput  Mbps                |         |
       | cells  | bytes  |  D1      D2      D3      D4      D5   |  Total  |
       |--------|--------|---------------------------------------|---------|
       | 330000 | 65536  |15.475  15.4554 15.3671 15.4028 15.3712| 77.0715 |
       | 12000  | 120000 |22.1366 22.089  21.6766 21.9468 21.743 | 109.592 |
       | 36000  | 360000 |22.00   22.2327 21.7957 22.0239 21.8398| 109.8921|
       |--------|--------|---------------------------------------|---------|

       Set 3:
       |--------|--------|---------------------------------------|---------|
       | Buffer | MAX.WIN|       Throughput  Mbps                |         |
       | cells  | bytes  |  D1      D2      D3      D4      D5   |  Total  |
       |--------|--------|---------------------------------------|---------|
       | 12000  | 600000 |13.1048 13.4268 5.91446 19.417  6.55147| 58.41453|
       | 36000  | 600000 |17.159  18.238  4.0895  16.0899 11.1238| 66.7002 |
       | 12000  | 1800000|13.1048 13.4268 5.91446 1.9417  6.55147| 58.41453|
       | 36000  | 1800000|15.00   9.98533 3.46452 14.1859 9.22931| 51.86506|
       |--------|--------|---------------------------------------|---------|

       From the above results, we observe the following: 

       Set 1 uses switch buffers less than 1 RTT*Bandwidth (11040 cells).
       We observe repeated loss. The table shows that the case with switch
       buffers = 8192 cells performs worse (aggregrate throughput is less) 
       than when the buffer = 4096 cells. Hence, when there is cell loss,
       increasing UBR switch buffers does not necessarily mean increased 
       TCP throughput.

       Set 2 shows simulations where there is no loss.
       The first simulation in this set shows that the maximum throughput 
       is less than optimal. This is because the TCP maximum window 
       size is less than 1 RTT (approx. 120000 bytes). As a result,
       the TCP source could not fill the available pipe capacity and
       hence the low throughput resulted. For a single TCP source to achieve
       maximum possible throughput, its maximum window size must be
       greater than 1 RTT*bandwidth.  In the second and third
       simulations, the total throughput is close to the optimal (minus
       overhead due to the TCP/IP/ATM headers) value. In these cases,
       all sources obtained an equal amount of bandwidth.

       In the cases covered by Set 2, the switch buffers were at least 
       n*TCP.MAX.WIN. Therefore, to ensure zero cell loss, either TCP.MAX.WIN 
       must be controlled to 1/nth of the smallest switch buffer (where
       n is the number of sources), or the UBR switches must have buffers
       as much as the sum the maximum TCP windows of all the sources.
       Since every source needs to have a maximum window size greater than
       1 RTT*bandwidth, it is the switch which must buffer the sum the 
       maximum TCP windows of all the sources. Since the required buffering
       depends upon the number of sources, zero loss UBR may be expensive
       for networks with large number of sources.

       Set 3 shows more simulations varying the TCP MAX.WIN and switch 
       buffer, such that the switch buffers are less than n*TCP.MAX.WIN.
       There is more than 50% drop in total throughput. There is some 



       unfairness in the bandwidths obtained. However, the unfairness is
       not consistent, in the sense that, a single source is not given 
       preferential treatment throughout the simulation. There were periods
       when any source obtained higher throughput than any other source.
       Similarly, no single source is starved either. 

       It should be noted that these experiments of UBR did not use
       special policies for dropping cells. We see that the simple tail
       drop policies result in unfairness among the TCP connections and
       substantial wasted bandwidth. Fairness and throughput can be 
       improved by using better buffer allocation and drop policies. 
       Drop policies are more critical for UBR than ABR to improve 
       throughput. We show in [10] that the switch scheme is more important
       than the drop policies for ABR. We will present further results
       with UBR using drop policies at the ATM Forum meeting.

       CONCLUSIONS
       -----------

       * Switch queues may be as high as the sum of the TCP windows.
       Zero cell loss for TCP requires that the buffers equal at least
       the sum of the TCP maximum windows. The required buffers thus
       depends on the number of TCP sources.

       * TCP receiver window must be greater than 1 RTT for full
       throughput with one source.

       * Cell loss results in unfairness in many cases. However, no
       single TCP source is given preferential treatment and no TCP
       sources are starved.

       * Cell loss results in lower TCP throughput. This decrease in
       throughput shows up as increased file transfer times or a lower
       network capacity (but not generally as broken connections).

       * Fairness may be improved by proper buffer allocation and drop
       policies.

       * UBR may be a viable low cost solution for LANs without VBR and
       with a limited number of sources.
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