
 ATM Forum Document Number: ATM_Forum/96-0518

 Title: Performance of TCP over UBR and buffer requirements

 Abstract:

 We study TCP throughput and fairness over UBR for several
 buffer and maximum window sizes. TCP performs best when
 there is no loss. The performance is severely degraded under
 loss (regardless of UBR or ABR). Therefore, we study the switch
 buffer requirements for zero loss. The required buffers are
 found to be the function of number of VCs and their round-trip
 times.

 Source:

 Raj Jain, Rohit Goyal, Shiv Kalyanaraman, and Sonia Fahmy.
 The Ohio State University
 Department of CIS
 Columbus, OH 43210-1277
 Phone: 614-292-3989, Fax: 614-292-2911, Email: Jain@ACM.Org

 The presentation of this contribution at the ATM Forum is sponsored by
 NASA.

 Date: April 1996

 Distribution: ATM Forum Technical Working Group Members
 (Traffic Management)

 Notice: This contribution has been prepared to assist the ATM
 Forum. It is offered to the Forum as a basis for discussion and
 is not a binding proposal on the part of any of the contributing
 organizations. The statements are subject to change in form and
 content after further study. Specifically, the contributors
 reserve the right to add to, amend or modify the statements
 contained herein.

 INTRODUCTION

 TCP congestion control mechanisms effectively recover from
 segment loss and also avoid congestion collapse. It
 is useful to study the performance of TCP over the Unspecified
 Bit Rate (UBR) service provided by ATM networks. UBR provides no
 congestion control mechanisms. Enhancements have been proposed to
 UBR that propose intelligent cell drop policies at the switches.

 The purpose of this and our subsequent contributions on this

Raj Jain
Horizontal extra long

 topic is to characterize the performance of TCP over UBR and its
 various enhancements. This particular contribution concentrates
 on the effect TCP receiver window, switch buffer size, and cell
 drop policy on TCP performance.

 In our other contributions [8,10] and papers [9], we have studied
 the performance of TCP/IP over ABR. In [10], we characterize ABR
 buffer requirements with TCP sources.

 SOME OBSERVATIONS ABOUT TCP

 TCP congestion control mechanisms consist of a "slow start" and
 "congestion avoidance". Slow start, or exponential rise phase
 is triggered whenever a TCP source detects network congestion
 indicated by the triggering of the retransmission timout. Slow
 start results in the reduction of the TCP congestion window to
 one segment. The congestion window then doubles every round trip
 until the "congestion avoidance" or linear rise phase is reached.
 During this phase, the TCP source increases the congestion
 window by one segment every round trip. As a result, if the TCP
 congestion window is allowed to increase, TCP can potentially use
 all available network capacity.

 The TCP congestion control mechanisms successfully avoid
 congestion collapse. Slow start empties the TCP pipe every time
 it detects loss. Although slow start limits the packet loss, it
 loses considerable time whenever there is loss. It takes several
 roundtrips for TCP to return to its optimal operating point. As
 a result TCP throughput decreases considerably when segments are
 dropped. TCP performance is optimal when there is zero segment
 loss. Even a single segment loss can decrease throughput
 considerably.

 TCP Reno includes the Fast Retransmit and Fast Recovery
 algorithms that improve TCP performance when a single segment is
 lost. However, in high bandwidth links, network congestion
 results in several dropped segments. In this case, fast
 retransmit and recovery are not able to recover from the loss and
 slow start is triggered. Fast retransmit and recovery are
 effective in single packet losses typically due to error. In our
 experiments, all losses are due to congestion and result in
 multple segments being dropped. Therefore, we first study
 TCP without fast retransmit and recovery running on UBR.

 TCP begins slow start whenever the retransmission timer is
 triggered. The accuracy of this timout depends on the timer
 granularity used in the TCP implementation. Most current TCP
 implementations measure round-trip delays using a granularity of
 100 or 500 ms. Larger granularity means that the sources have to
 wait longer before timing out and recovering from a lost packet.
 All our simulations use a timer granularity of 100 ms.

 PARAMETERS:

 TCP MAX.WIN

 TCP maximum window size plays an important role in its congestion
 dynamics. The default maximum congestion window is 65536 bytes.
 However, in high delay links, this window is too small to achieve
 full throughput. On the other hand, having maximum window above

 the RTT is not fruitful, since, at any time, only 1 RTT worth of
 segments can be in the TCP pipe. The maximum window size determines
 the amount of data that can be present in the TCP pipe. As a result,
 this parameter determines the storage capacity needed in the network.
 We experiment with various values of the TCP maximum window size.

 SWITCH BUFFER

 UBR provides no explicit feedback to its sources. Multiple TCP
 sources may dump a window of segment each on any UBR switch. As a
 result, the switch may need to store the cells from segments of
 all the TCP windows. Based on the MAX.WIN parameter used, we use
 various buffer sizes in our simulations.

 The following variations of MAX.WIN and switch buffer sizes were
 simulated:

 Set 1: These consist of Switch buffers smaller than 1 RTT and
 relatively large TCP maximum windows.
 a. TCP.MAX.WIN = 600000 bytes, Switch Buffer = 4096 cells
 b. TCP.MAX.WIN = 600000 bytes, Switch Buffer = 8192 cells

 Set 2: These consist of Switch Buffers = sum of all TCP maximum
 windows for five sources. The window sizes correspond to
 being less than, equal to and greater than 1 RTT.
 a. TCP.MAX.WIN = 65536 bytes, Switch Buffer = 330000 cells
 b. TCP.MAX.WIN = 120000 bytes, Switch Buffer = 12000 cells
 c. TCP.MAX.WIN = 360000 bytes, Switch Buffer = 36000 cells

 Set 3: Full factorial of:
 TCP.MAX.WIN = 600000, 18000000 bytes
 Switch Buffer = 12000, 36000 cells
 Here the switch buffers are some multiple (less than the number
 of sources) of the TCP maximum windows.

 CELL DROP POLICY

 In its simplest form, a switch could implement a tail drop policy
 in which all cells arriving after the buffers are full are
 dropped. This is expected to result in excessive wasted
 bandwidth. If cells are dropped from multiple TCP packets, then
 all these packets need to be retransmitted by the source TCP.
 Early Packet Discard (EPD) has been suggested to remedy the
 problems caused by tail drop. EPD tries to discard cells from
 the same TCP packet during congestion. A threshold is set at the
 switches, and when the switch queue length exceeds this
 threshold, cells from any new packets are dropped. The EPD
 algorithm is the one suggested by [3,7]. However, EPD makes no
 attempt at achieving fairness among different VC's. It is also
 not known how to choose the threshold for the switch buffer. The
 choice of EPD threshold value may effect performance. We
 experiment with different buffer sizes and EPD thresholds.

 CONFIGURATION

 Our simulations use a five source configuration as illustrated
 below.

 S1----| |---->D1
 | |
 S2----| |---->D2

 | |
 S3----|-->Sw1---------->Sw2---->|---->D3
 | |
 S4----| |---->D4
 | |
 S5----| |---->D5

 * All link delays are 5 milliseconds. Thus, the Round Trip Time
 due to the propagation delay is 30 ms.

 * All link bandwidths are 155.52 Mbps

 * PCR = 155.52 Mbps

 * All sources are infinite TCP sources. TCP layer always has a
 packet to send as long as permitted by the TCP window. The actual
 traffic as seen by the ATM layer is bursty.

 * The traffic is unidirectional. Only the sources send data. The
 destination sends only acks.

 * TCP Fast Retransmit and Recovery are not implemented.

 * TCP segment size = 512 bytes.

 * TCP timer granularity = 100ms.

 * TCP maximum window size: parameter.

 * TCP delay ack timer is NOT set. Segments are acked as soon are
 they are
 received.

 * Duration of simulation runs: 2 seconds.

 METRICS:

 We measure performance based on the throughput as follows:

 TCP throughput: This is measured at the destination TCP layer.
 The destination measures throughput of all the segments received
 in sequence. If a segment is received out of sequence, (due to
 error/loss of previous segments) it is not included in the
 throughput measurement until all the missing segments are
 received.

 We can also plot TCP sequence numbers measured at the source TCP
 layer.

 SIMULATION RESULTS

 The simulation results are summarized in the table below.

 Set 1:
 |--------|--------|---------------------------------------|---------|
 | Buffer | MAX.WIN| Throughput Mbps | |
 | cells | bytes | D1 D2 D3 D4 D5 | Total |
 |--------|--------|---------------------------------------|---------|
 | 4096 | 600000 |5.56823 35.6997 2.62913 4.49441 4.13301| 52.52448|

 | 8192 | 600000 |6.21502 4.28641 5.84917 3.2953 7.06766| 26.71356|
 |--------|--------|---------------------------------------|---------|

 Set 2:
 |--------|--------|---------------------------------------|---------|
 | Buffer | MAX.WIN| Throughput Mbps | |
 | cells | bytes | D1 D2 D3 D4 D5 | Total |
 |--------|--------|---------------------------------------|---------|
 | 330000 | 65536 |15.475 15.4554 15.3671 15.4028 15.3712| 77.0715 |
 | 12000 | 120000 |22.1366 22.089 21.6766 21.9468 21.743 | 109.592 |
 | 36000 | 360000 |22.00 22.2327 21.7957 22.0239 21.8398| 109.8921|
 |--------|--------|---------------------------------------|---------|

 Set 3:
 |--------|--------|---------------------------------------|---------|
 | Buffer | MAX.WIN| Throughput Mbps | |
 | cells | bytes | D1 D2 D3 D4 D5 | Total |
 |--------|--------|---------------------------------------|---------|
 | 12000 | 600000 |13.1048 13.4268 5.91446 19.417 6.55147| 58.41453|
 | 36000 | 600000 |17.159 18.238 4.0895 16.0899 11.1238| 66.7002 |
 | 12000 | 1800000|13.1048 13.4268 5.91446 1.9417 6.55147| 58.41453|
 | 36000 | 1800000|15.00 9.98533 3.46452 14.1859 9.22931| 51.86506|
 |--------|--------|---------------------------------------|---------|

 From the above results, we observe the following:

 Set 1 uses switch buffers less than 1 RTT*Bandwidth (11040 cells).
 We observe repeated loss. The table shows that the case with switch
 buffers = 8192 cells performs worse (aggregrate throughput is less)
 than when the buffer = 4096 cells. Hence, when there is cell loss,
 increasing UBR switch buffers does not necessarily mean increased
 TCP throughput.

 Set 2 shows simulations where there is no loss.
 The first simulation in this set shows that the maximum throughput
 is less than optimal. This is because the TCP maximum window
 size is less than 1 RTT (approx. 120000 bytes). As a result,
 the TCP source could not fill the available pipe capacity and
 hence the low throughput resulted. For a single TCP source to achieve
 maximum possible throughput, its maximum window size must be
 greater than 1 RTT*bandwidth. In the second and third
 simulations, the total throughput is close to the optimal (minus
 overhead due to the TCP/IP/ATM headers) value. In these cases,
 all sources obtained an equal amount of bandwidth.

 In the cases covered by Set 2, the switch buffers were at least
 n*TCP.MAX.WIN. Therefore, to ensure zero cell loss, either TCP.MAX.WIN
 must be controlled to 1/nth of the smallest switch buffer (where
 n is the number of sources), or the UBR switches must have buffers
 as much as the sum the maximum TCP windows of all the sources.
 Since every source needs to have a maximum window size greater than
 1 RTT*bandwidth, it is the switch which must buffer the sum the
 maximum TCP windows of all the sources. Since the required buffering
 depends upon the number of sources, zero loss UBR may be expensive
 for networks with large number of sources.

 Set 3 shows more simulations varying the TCP MAX.WIN and switch
 buffer, such that the switch buffers are less than n*TCP.MAX.WIN.
 There is more than 50% drop in total throughput. There is some

 unfairness in the bandwidths obtained. However, the unfairness is
 not consistent, in the sense that, a single source is not given
 preferential treatment throughout the simulation. There were periods
 when any source obtained higher throughput than any other source.
 Similarly, no single source is starved either.

 It should be noted that these experiments of UBR did not use
 special policies for dropping cells. We see that the simple tail
 drop policies result in unfairness among the TCP connections and
 substantial wasted bandwidth. Fairness and throughput can be
 improved by using better buffer allocation and drop policies.
 Drop policies are more critical for UBR than ABR to improve
 throughput. We show in [10] that the switch scheme is more important
 than the drop policies for ABR. We will present further results
 with UBR using drop policies at the ATM Forum meeting.

 CONCLUSIONS

 * Switch queues may be as high as the sum of the TCP windows.
 Zero cell loss for TCP requires that the buffers equal at least
 the sum of the TCP maximum windows. The required buffers thus
 depends on the number of TCP sources.

 * TCP receiver window must be greater than 1 RTT for full
 throughput with one source.

 * Cell loss results in unfairness in many cases. However, no
 single TCP source is given preferential treatment and no TCP
 sources are starved.

 * Cell loss results in lower TCP throughput. This decrease in
 throughput shows up as increased file transfer times or a lower
 network capacity (but not generally as broken connections).

 * Fairness may be improved by proper buffer allocation and drop
 policies.

 * UBR may be a viable low cost solution for LANs without VBR and
 with a limited number of sources.

 REFERENCES:

 [1] Chien Fang, Arthur Lin: "On TCP Performance of UBR with EPD
 and UBR-EPD with a Fair Buffer Allocation Scheme," AF-TM 95-1645,
 December 1995.

 [2] Chien Fang, Arthur Lin, "A Simulation Study of ABR Robustness
 with Binary-Mode Switches: Part II," AF-TM 95-1328R1, October
 1995.

 [3] Hongqing Li, Kai-Yeung Siu, and Hong-Ti Tzeng, "TCP over ATM
 with ABR service versus UBR+EPD service," AF-TM 95-0718, June
 1995.

 [4] AF-TM 95-0503, Hongqing Li, Kai-Yeung Siu, Hong-Yi Tzeng,
 Brian Hang, Wai Yang, "Issues in TCP over ATM," April 1995.

 [5] Tim Dwight, "Guidelines for the Simulation of TCP/IP over
 ATM," AF-TM 95-0077r1, March 1995.

 [6] Stephen Keung, Kai-Yeung Siu, "Degradation in TCP Performance

 under Cell Loss," AF-TM 94-0490, April 1994.

 [7] Allyn Romanov, Sally Floyd, "Dynamics of TCP Traffic over ATM
 Networks."

 [8] Raj Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, F. Lu, and S.
 Srinidhi, "TBE and TCP/IP traffic," AF-TM 96-0177, February 1996.

 [9] S. Kalyanaraman, Raj Jain, S. Fahmy, R. Goyal, F. Lu, and S.
 Srinidhi, "``Performance of TCP/IP over ABR,'' Submitted to
 Globecom'96.

 [10] Raj Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, F. Lu, and S.
 Srinidhi, "Buffer requirements for TCP over ABR" AF-TM 96-0517,
 April 1996.

 All our past ATM forum contributions/presentations, and recent
 papers can be obtained on-line:
 http://www.cse.wustl.edu/~jain/

