

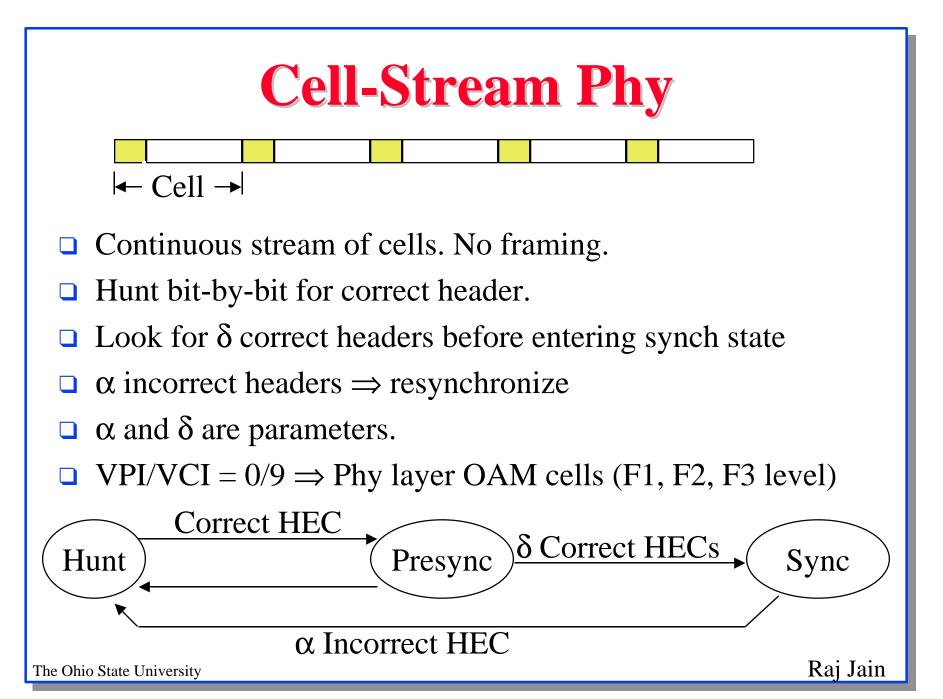
Physical Layer

- Physical Medium Dependent (PMD) Sublayer:
 Fiber, Twisted-Pair, Coax, SONET, DS3
- **Transmission convergence layer:**
 - □ Convert bit stream to cell stream
 - □ Transmission frame adaptation: packing cells into frames
 - Cell delineation: scrambling and cell recovery after descrambling
 - □ HEC generation and verification
 - Cell rate decoupling: Insertion and suppression of idle cells

B-ISDN Physical Layer

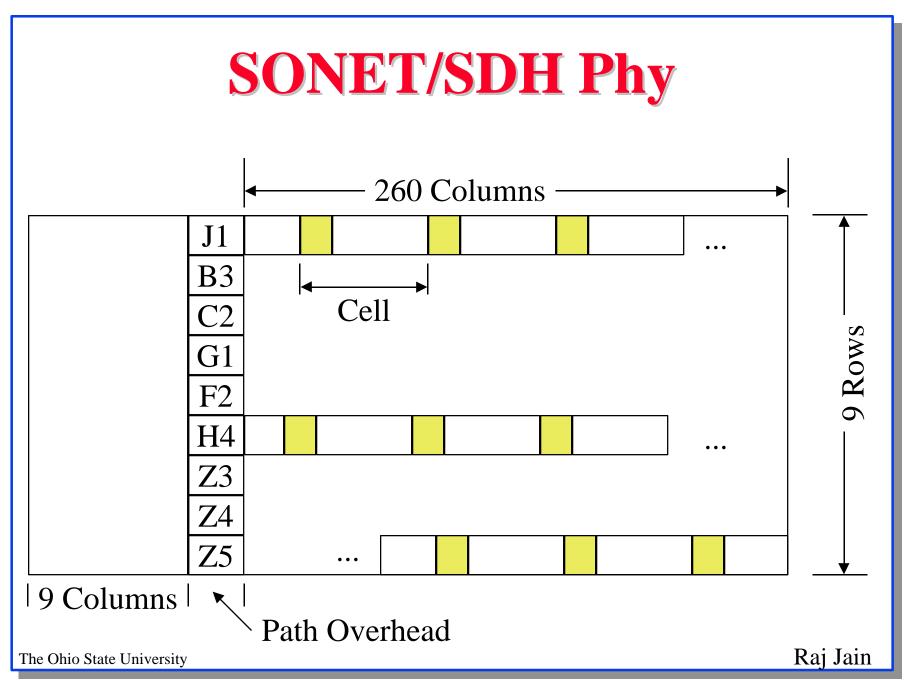
- □ I.432 (1993) defines three PHY Interfaces at T_B (NT1-NT2):
 - □ Full-duplex 155.52 Mbps
 - Subscriber to Network at 155.52 Mbps, Network to subscriber at 622.08 Mbps (For video distribution)
 - □ Full-duplex 622.08 Mbps
- □ Full-Duplex 155.52 Mbps
 - □ Coaxial cable pair (100-200 m max) using CMI coding
 - □ Single mode fiber pair (800-2000 m max) using NRZ
- □ 622.08 Mbps: Single mode fiber pair using NRZ

PHYs for Private UNI


Frame Format	Bit Rate/Line Rate	Media	
Cell Stream	25.6 Mbps/ 32 Mbaud	UTP-3	
STS-1	51.84 Mbps	UTP-3	
FDDI	100 Mbps/ 125 Mbaud	Multimode Fiber	
STS-3c, STM-1	155.52 Mbps	UTP-5	
STS-3c, STM-1	155.52 Mbps	Single-Mode Fiber,	
		Multimode Fiber, Coax	
		pair	
Cell Stream	155.52 Mbps/ 194.4	Multimode Fiber, STP	
	Mbaud		
STS-3c, STM-1	155.52 Mbps	UTP-3	
STS-12, STM-4	622.08 Mbps	SMF, MMF	

PHYs for Public UNI

Frame Format	Bit Rate	Media	
DS1	1.544 Mbps	Twisted pair	
DS3	44.736 Mbps	Coax pair	
STS-3c, STM-1	155.520 Mbps	Single-mode Fiber	
E1	2.048 Mbps	Twisted pair, Coax pair	
E3	34.368 Mbps	Coax pair	
J2	6.312 Mbps	Coax pair	
$N \times T1$	$N \times 1.544$ Mbps	Twisted pair	


Transmission Structure

- □ I.432 specifies two options:
 - □ Sequence of cells. Synchronization using HEC.
 - □ SONET/SDH payload envelops

SONET/SDH Based Phy

- □ Allows SONET facilities to be used for ATM and non-ATM
- Lower speed ATM streams can be multiplexed into higher speed SONET streams
- H4 octet in the path header indicates offset to the boundary of the first cell following H4
- Some cell may need to be split between successive SONET frames.
- OAM information is carried in the SONET overhead octets.
 F1 and F2 in section overhead. F3 in path overhead.

SONET STS-3c

- Payload rate = 9 \times 260 \times 8/125 = 149.76 Mbps
- Cell payload rate = 135.63 Mbps
- □ Cell delineation using HEC.

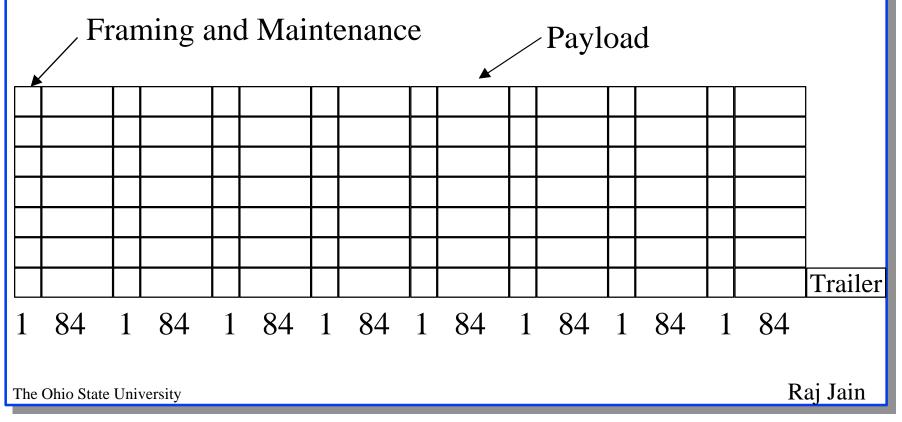
□ Look for 5-byte blocks with HEC separated by 48 bytes

- \Box Cells are packed one after another \Rightarrow One can send 127 bits matching the scrambling sequence resulting in all 1's or 0's. Scramble by dividing by $1 + x^{43}$. Only one in 2^{43} patterns will cause all 1's or 0's.
- □ Self-synchronous scrambler

 \Rightarrow No need for synchronization.

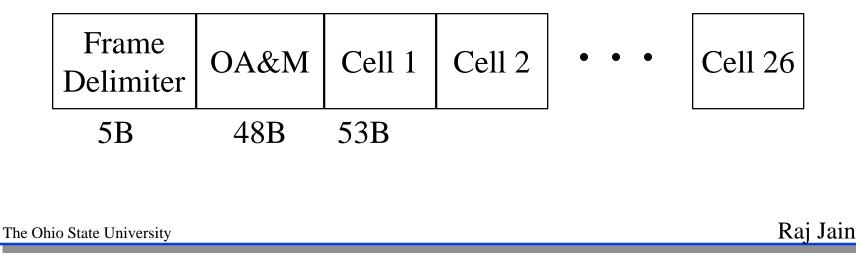
 \Rightarrow Each bit error in fiber results in two bit errors after descrambling (multiplication).

The Ohio State University

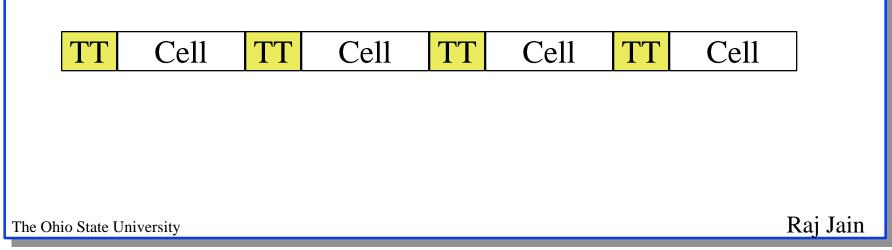

Raj Jain

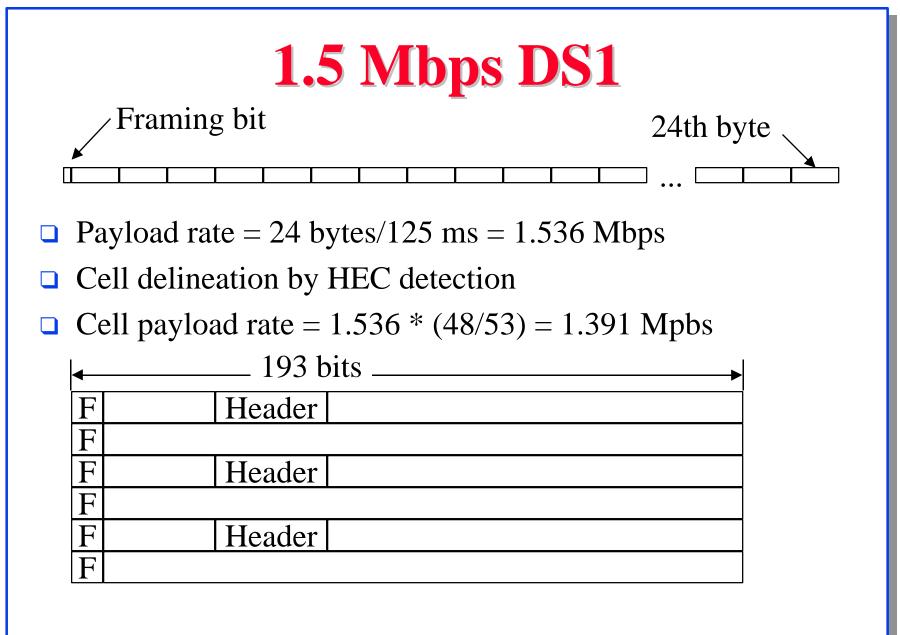
ATM on SONET STS-3c

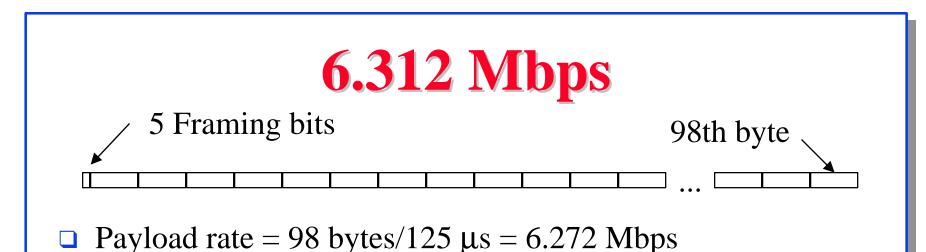
- The polynomial was chosen because it does not conflict with existing CRCs.
- ❑ Also 43 is larger than header length ⇒ Header will not have two-bit errors.


44 Mbps DS3

- □ Payload rate = $7 \times 8 \times 84/106.4 = 44.21$ Mbps
- Cell Payload rate = 12 cells per 125 μ s = 36.864 Mbps


155 Mbps, 8b/10b


- □ 8b/10b code used in Fiber Channel
- □ 2 km multimode fiber or 100 m shielded twisted pair
- □ 155.52 Mbps \Rightarrow 194.4 Mbaud
- **Cells delimited using a transmission frame**
- Cell payload rate =155.52× (26/27) ×(48/53)
 = 135.63 Mbps = STS-3c rate



100 Mbps 4b/5b

- □ 4b/5b used in FDDI
- □ 100 Mbps \Rightarrow 125 Mbaud
- □ Cells delimited with TT pair
- Cell = TT + 53 bytes = 2 + 106 = 108 symbols
- Cell payload rate = 100(53/54)(48/53) = 88.89 Mbps

- 97th and 98th byte are reserved.
 96 Bytes per frame used for cell stream.
- □ Cell delineation by HEC detection
- Cell payload rate = $(48/53)(96 \times 8/125 \mu s) = 5.928$ Mpbs

Raj Jain

25.6 Mbps UTP

- □ Scrambling:
 - □ pseudo-random numbers are generated using $x^{10} + x^7 + 1$
 - □ Successive 4 bits are XOR'ed with 4-bits of data
 - □ All 53 bytes are scrambled
 - The random number generator is initialized to 3FF upon detection of two consecutive escape (X) nibbles. The two X nibles (00010) may not be octet-aligned.
- □ Coding: 4b/5b + NRZI

UTOPIA

- □ Universal Test & Operations PHY Interface for ATM
- □ A common PHY-ATM interface over a wide range of PHYs
- ❑ Chip-chip or board-board interface ⇒ Industry standard devices
- PHY-ATM interface not visible outside and so not required for interoperability

	-	Transmit Data	
ATM	Transmit Control	-	
	Receive Data	-	
		Receive Control	PHY
	Management Entity	Management Interface	
		Test Interface	
The Ohio State University Raj Jain			

UTOPIA

- **UTOPIA** Level 1 defines electrical interfaces for:
 - An 8-bit wide data path using an octet-level handshake at 25 MHz
 - □ An 8-bit data path using cell-level handshake at 25 MHz
- 16-bit and 32-bit wide data paths may be defined for higher speeds
- **UTOPIA** Level 2
 - □ addresses 33 MHz operation for PCI bus and
 - □ 50 MHz operation for 622 Mbps
 - □ Multi-PHY operation

References

- □ G. Garg, "UTOPIA Level 2 Specification V0.8," ATM Forum/95-0114R1, April 10, 1995.
- "UTOPIA, An ATM-PHY Interface Specification, Level 1, V2.01," March 21, 1994.
- □ G.H. Im, et al, "51.84 Mb/s 16-CAP ATM LAN standard," IEEE JSAC, May 1995, pp. 620-632.
- W.E. Stephens and T.C. Banwell, "155.52 Mb/s Data Transmission on Category 5 Cable Plant," IEEE Communications Magazine, April 1995, pp. 62-69.
- □ "6,312 kbps UNI Specification"
- "Physical Interface Specifications for 25.6 Mb/s over Twisted Pair Cable," June 11, 1995.

The Ohio State University

Raj Jain

- □ DS1 Physical Layer Specification, September 1994.
- E3 (34,368 kbps) Physical Lyaer Interface, November 28, 1994.
- E4 (139 264 kbps) Physical Layer Interface, November 28, 1994.
- "ATM Physical Medium Dependent Interface Specification for 155 Mb/s over Twisted Pair Cable," AF-PHY-0015.000, September 1994.
- "Mid-Range Physical Layer Specification for Category 3 Unshielded Twisted Pair," AF-PHY-0018.000, September 1994.
- K. Brinkerhoff, et al, "155.52 Mb/s Physical Layer Specification for Category 3 Unshielded Twisted-Pair, Draft 1.2, January 1995.