

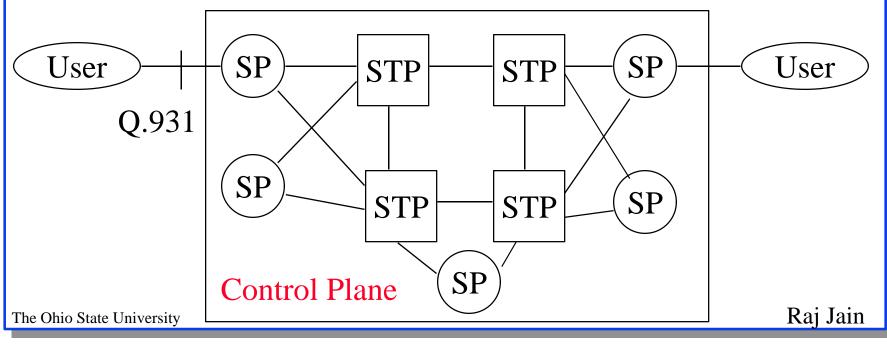


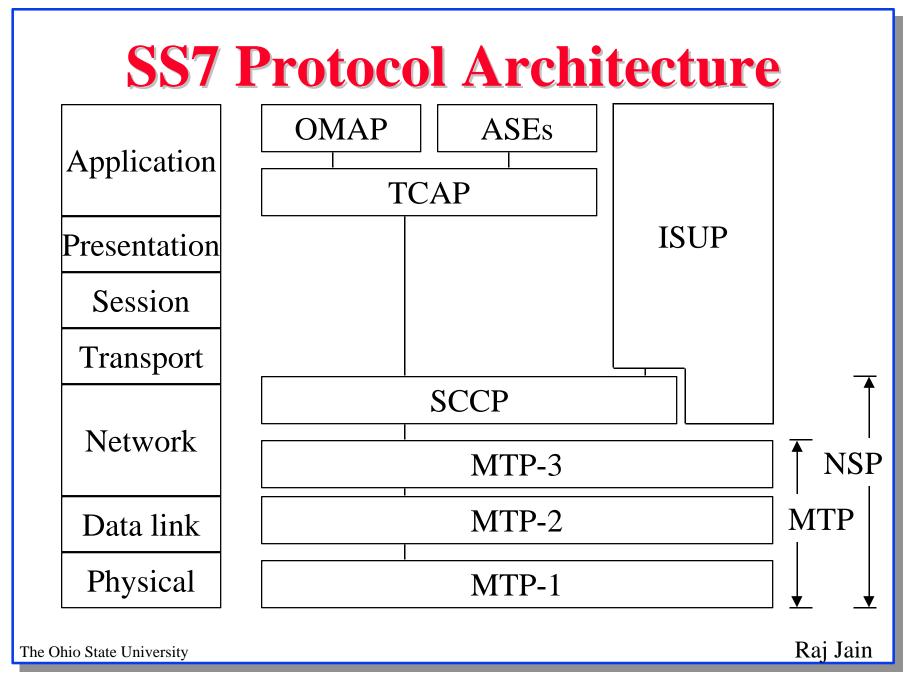

- □ What is B-ICI?
- □ SS7 Signaling and BISUP
- NNI Signaling
- □ Interworking:
  - □ Circuit emulation services
  - □ Frame relay
  - □ SMDS

#### What is **B-ICI**?

- □ B-ICI = Public Network-to-Network Interface
- Public network= Local exchange carrier (LEC), Independent Local Exchange carrier (ILEC), Inter-exchange carrier (IEC)
- □ B-ICI ≠ PNNI: Public carriers may not allow PNNI functions such as advertising, routing DTLs




# **B-ICI: Key Features**


- Based on Broadband ISDN User Part (B-ISUP) signaling messages and parameters
- □ Static routing based on E.164 addresses
- □ Point to point and multipoint connections (in V2.0)
- Supports UNI 3.1 QoS classes 0 through 4
- □ Allows end-to-end carriage of NSAP addresses
- Provides traffic data collection: ingress and egress cell counts
- □ Provides traffic management and network performance

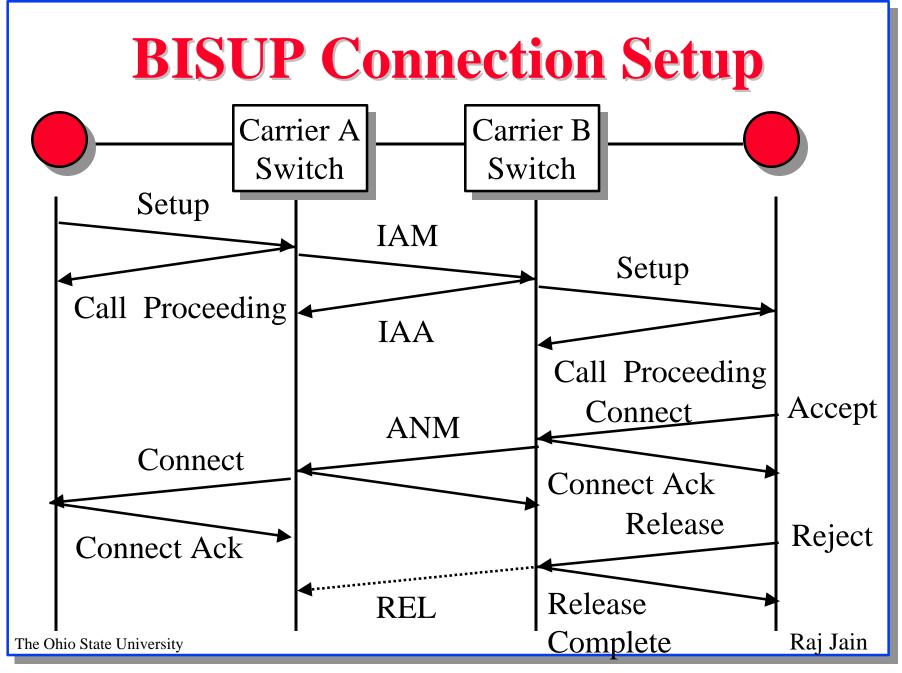
#### **B-ICI: Key Features (Cont)** Supports cell relay service (CRS), Circuit emulation services (CES), frame relay service (FRS), switched multimegabit service (SMDS) CRS CRS CES CES Public Public Public ATM ATM ATM FRS FRS Net A Net A Net A **SMDS** SMDS **B-ICI B-ICI** Raj Jain The Ohio State University

#### **SS7**

- Also known as Common Channel Signaling 7
- □ Separate signaling network of STPs
- □ STP = Signaling transfer points (can route sig messages)
- □ Signaling point (SP): Can handle SS7 control messages






#### **SS7 Protocol Architecture**

- Q.931 specifies the control messages from user to network
- SS7 specifies the mechanisms (services and protocols) inside the network
- Reliable transport is provided by MTP (message transfer part)
- Signaling connection control part (SCCP): Routes messages using logical addresses. Also supports duplications of databases.
- □ SSCP+MTP=Network service part

#### **SS7 User Parts**

- □ Separate user parts for different services:
  - □ Telephone user part (TUP)
  - Data user part (DUP)
  - Transaction capability part (TCAP): Allows non-circuit related request-response communication between two nodes in a signaling network.
  - ISDN User part (ISUP): Defines functions, procedures, and signaling information flows to set up, supervise, and release connections.
- Broadband ISUP (and ISUP) define NNI signaling messages (similar to Q.931 and Q.2931)

The Ohio State University



# **BISUP Messages: Examples**

- Initial address message IAM
- IAM Ack IAA
- IAM Reject IAR
- **Exit message EXM**
- Answer ANM
- Release REL
- □ Release complete RLC
- □ Call progress message CPG

### **BISUP Message Format**

Routing Label

Message Type Code

Message Compatibility

Message Length

Message Content

- **Q** Routing Label: Same label on all messages relating to a VC
- □ Message type: IAM, ...
- Message compatibility information:
   What to do if message not understood?
   Pass on, Discard message, Release call
- Message length: length of content

The Ohio State University

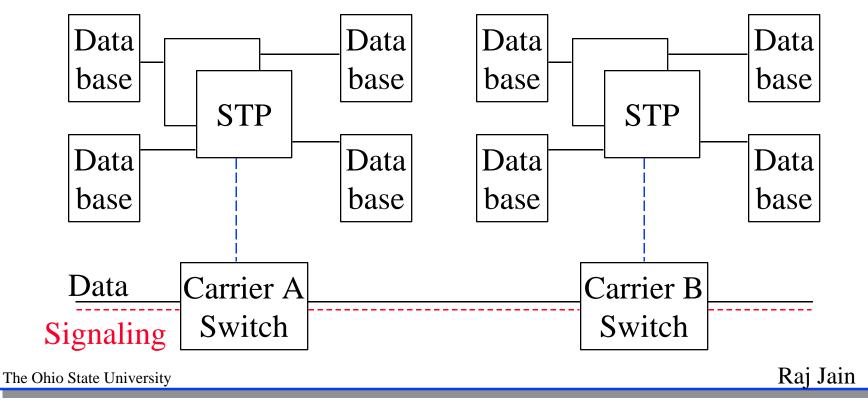
#### **BISUP Parameter Format**

Parameter name

Length Indicator

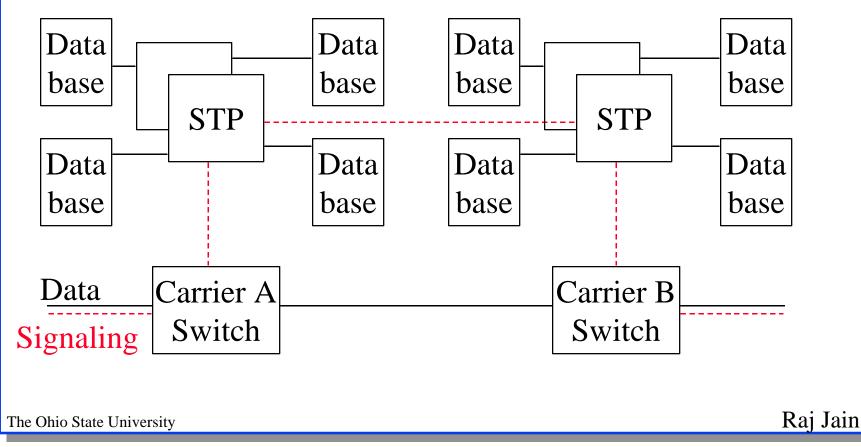
Parameter compatibility

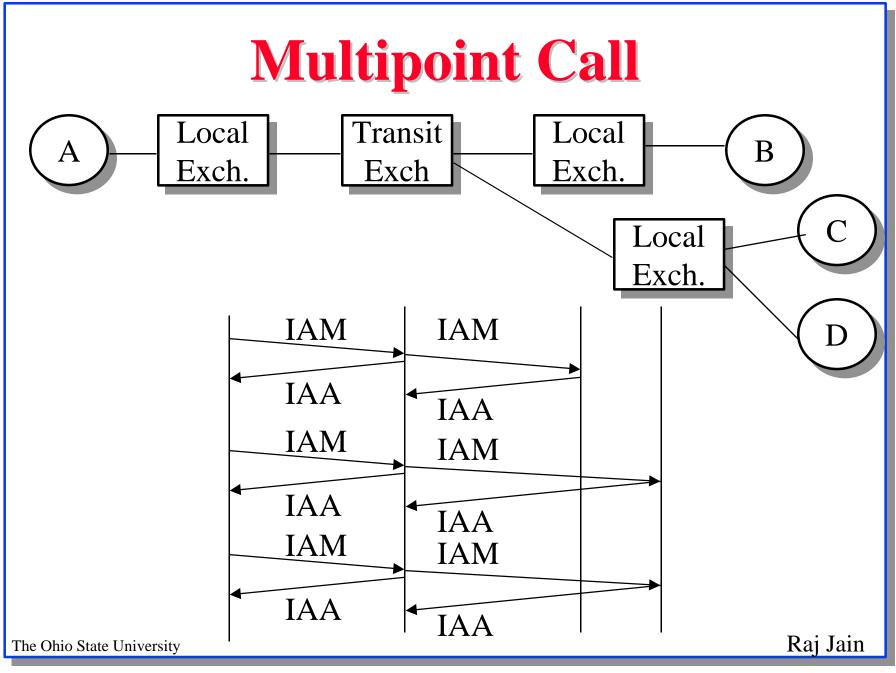
Parameter Content

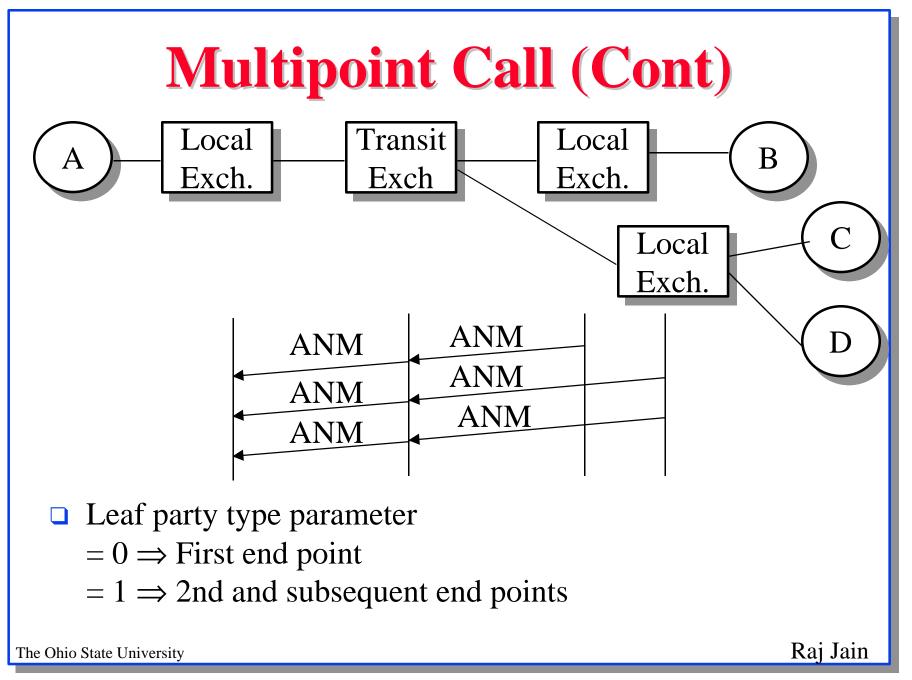

Parameter compatibility information:
 What to do if parameter not understood?
 Pass on, discard parameter, discard message, release call

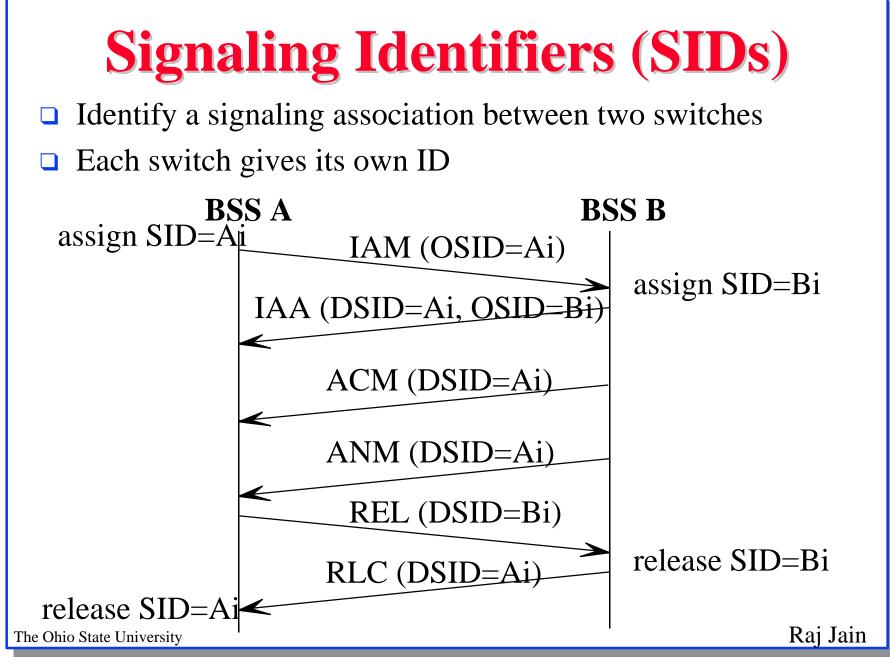
#### **BISUP Parameters: Examples**

- □ Called party number
- Called party subaddress carries ATM End System Address (AESA)
- **Calling party number**
- Calling party subaddress
- □ AAL parameters
- Additional calling party number
- □ ATM user traffic descriptor
- Broadband bearer capability
- Maximum end-to-end transit delay
- □ Transit network selection


# **Associated Signaling**


- B-ICI uses a subset of BISUP messages and information elements and uses them for inter-carrier NNI.
- □ B-ICI supporst only associated signaling





# **Quasi-Associated Signaling**

BISUP supports quasi-associated signaling also.
 But B-ICI does not.









# **BISUP Maintenance Control Fns**

- **Reset**: Caused by unexpected messages.
- **Blocking**: Enter diagnostic mode.
- **Remote User Part Availability**: Not supported by B-ICI.
- **Transmission Alarm**: fault indication.
- Automatic Congestion Control: Switch is overloaded. No new connections. or Release current connection"
- Signaling Congestion Control: Signaling network is overloaded. Discard lower priority messages. Four priority levels.
- Destination Unavialability: No new connections. Current connections released after a timeout.
- □ VPCI/VPI consistency check: Loopback test

The Ohio State University

## **Maintenance Control Messages**

- Blocking BLO
- Blocking Ack BLA
- **Unblocking UBL**
- **Unblocking Ack UBA**
- **Reset RSM**
- Reset Ack RAM
- User Part Test UPT
- User Part Available UPA
- Consistency Check Request CCR
- Consistency Check Request Ack CCRA
- □ Consistency Check End CCE
- Consistency Check End Ack CCEA

The Ohio State University

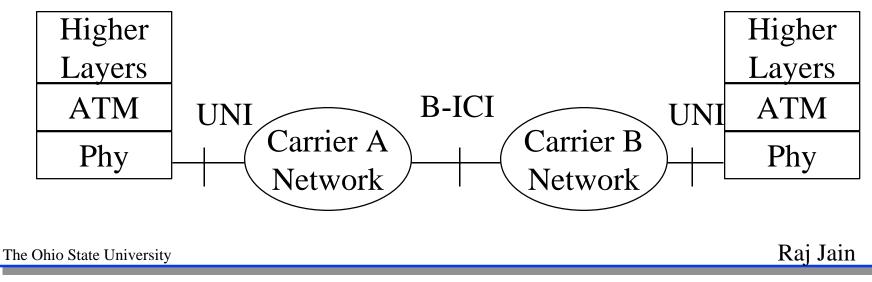
Raj Jain

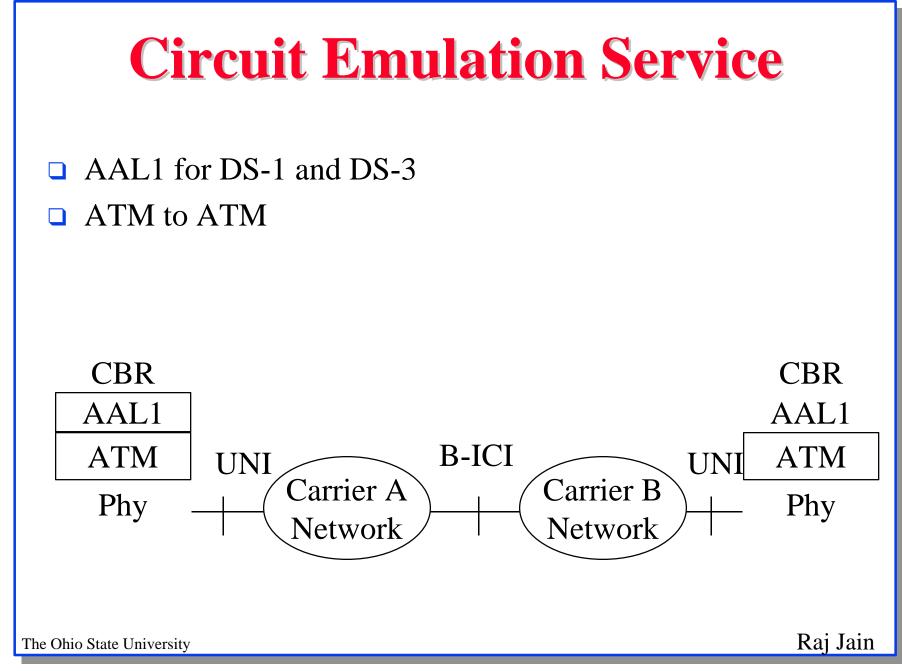
## **Protocol Monitoring**

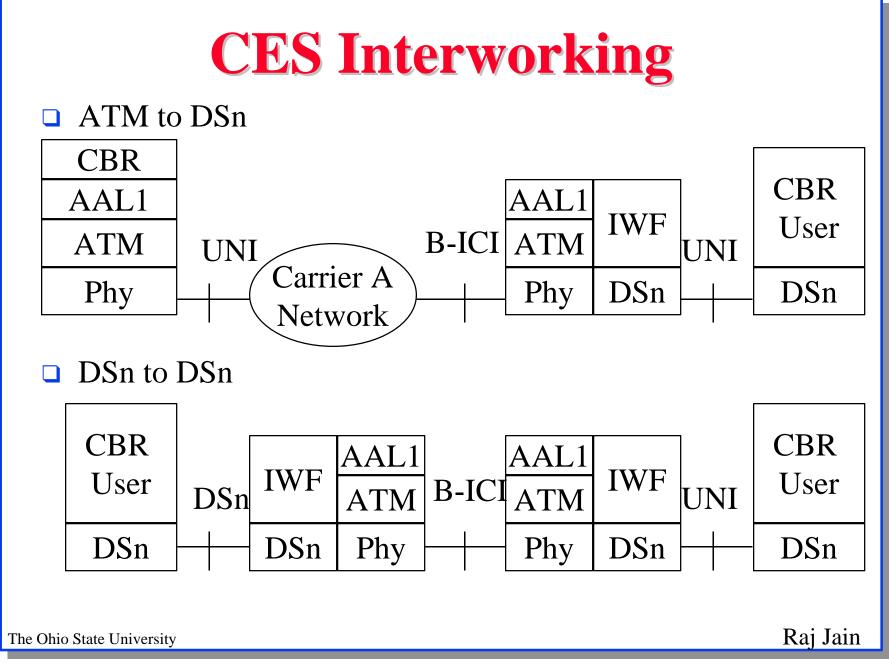
□ Keep count of

□ Calls released due to:

- + Urecognized messages
- + Unrecognized parameters
- □ BISUP messages discarded
- **D** BISUP parameters discarded

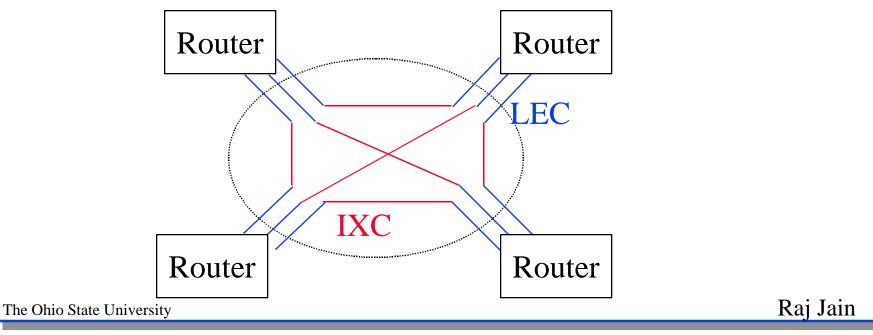

# **Usage Measurement**


- Ingress total cells
- Ingress high priority cells
- Egress total cells
- Egress high priority cells
- □ Interval start date
- Interval state time
- □ Interval elapsed time
- □ Recording interface: UNI or PVC
- Recording connection identifier
- **Carrier identifier**
- **Type of service**


The Ohio State University

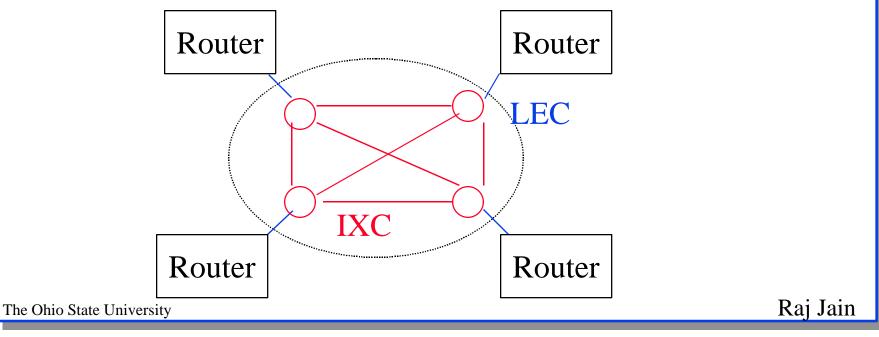
# **Cell Relay Service**

- Provides multiple QoS: CTD, CDV, CLR, Cell error ratio, Cell misinsertion rate, Mean time beween service outages, mean time to restore
- □ Static routing
- Operation and maintenance







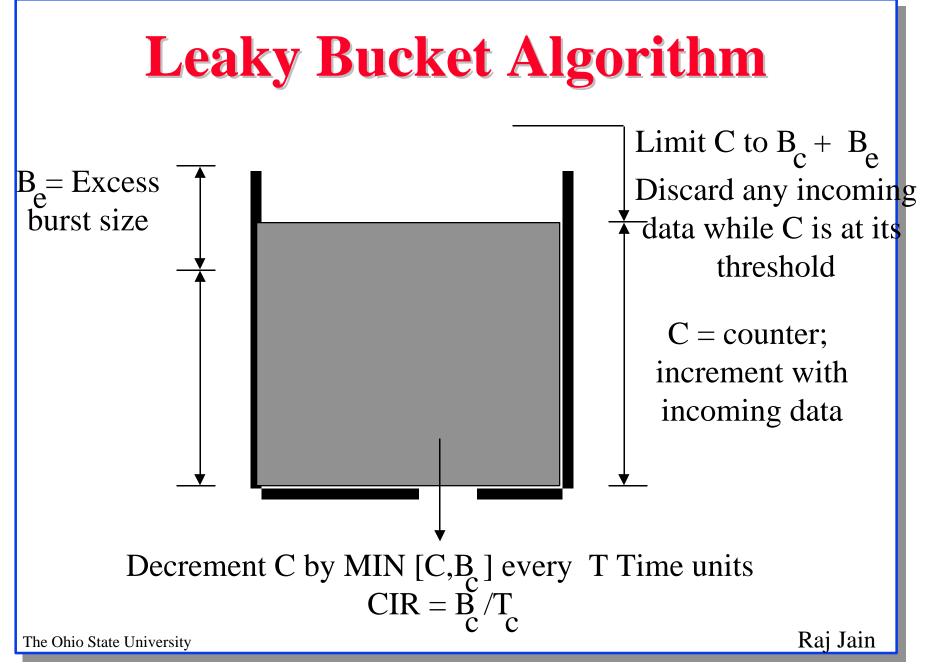


#### **Problems with Leased Lines**

- □ No user-to-user end-to-end signaling
- $\Box$  Multiple logical links  $\Rightarrow$  Multiple connections
- □ Four nodes ⇒ 12 ports, 12 local exchange carrier (LEC) access lines, 6 inter-exchange carrier (IXC) connections
- One more node ⇒ 8 more ports, 8 more LEC lines, 4 more IXC circuits



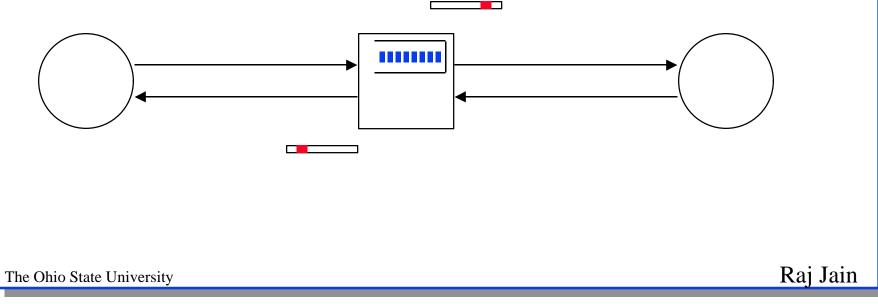
### **Solution: Frame Relay**

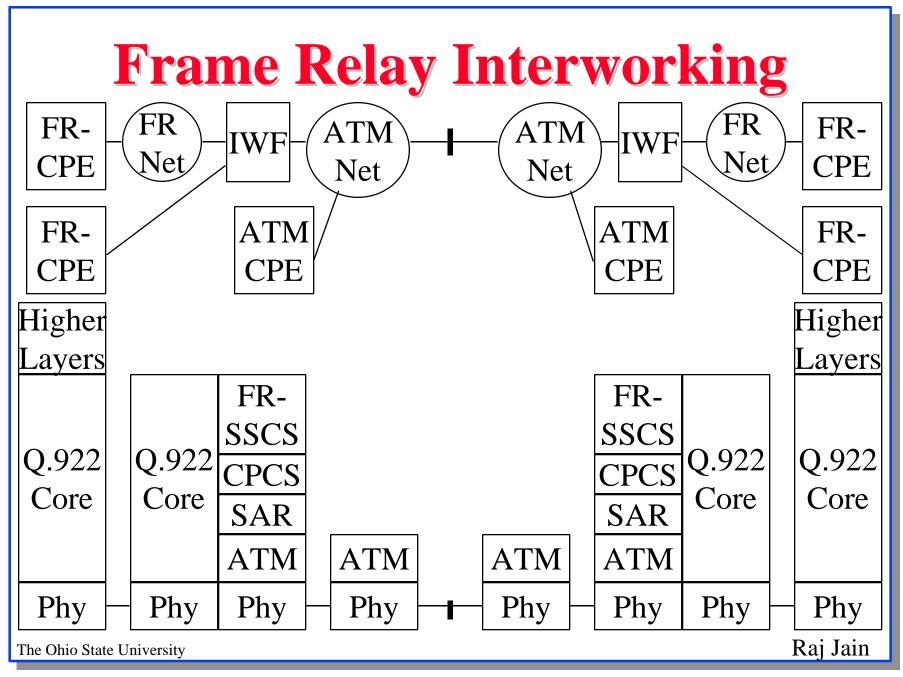
- □ Four nodes: 4 ports, 4 LEC access lines, 6 IXC circuits
- One more node: 1 more port, 1 more access line, 4 more IXC circuits
- □ Share leased lines  $\Rightarrow$  Virtual Private Networks




## **Frame Relay: Key Features**

- □ X.25 simplified
- □ No flow and error control
- □ Virtual circuit: Data Link Connection Identifiers (DLCI)
- Congestion control added
- $\Rightarrow$  Higher speed possible.
  - X.25 suitable to 200 kbps. Frame relay to 2.048 Mbps.


#### **Discard Control**


- □ Committed Information Rate (CIR)
- Committed Burst Size (Bc): Over measurement interval T T = Bc/CIR
- Excess Burst Size (Be)
- $\Box$  Between Bc and Be  $\Rightarrow$  Mark DE bit
- $\Box \quad \text{Over Be} \Rightarrow \text{Discard}$



# **Congestion Control**

- □ Each frame has two bits:
  - □ FECN: Forward explicit congestion notification
  - □ BECN: Backward explicit congestion notification
- Switches mark the bits when congested





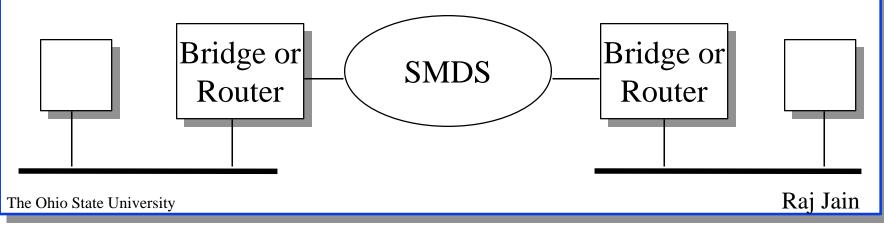
## **Frame Relay/ATM Interworking**

- Guidelines for connection parameter translation
  - Formula for converting access line rate, committed information rate, excess information rate, committed burst size, excess burst size, measurement interval to/from PCR, SCR, MBS, CDVT
- Guidelines for discard eligibility
  - □ FR to ATM: Two choices
    - + DE = 1  $\Rightarrow$  All cells have CLP=1
    - + CLP is not changed. Only header DE.
  - □ ATM to FR: Two choices
    - + Any CLP set  $\Rightarrow$  DE =1

+ CLP does not affect DE

Raj Jain

# **FR Interworking (Cont)**


- Guidelines for forward explicit congestion indication mapping
  - □ FR to ATM: Copy FECN into header. Set EFCI in cells to 0.
  - □ ATM to FR: SET FECN if FECN in header or if EFCI of last cell is 1.
- Guidelines for Backward congestion indication mapping
  - □ Pass BECN only in the header.
  - Set BECN in frames going in backward direction if EFCI in the last cell in the forward direction is 1.
- □ Support FR PVC status management

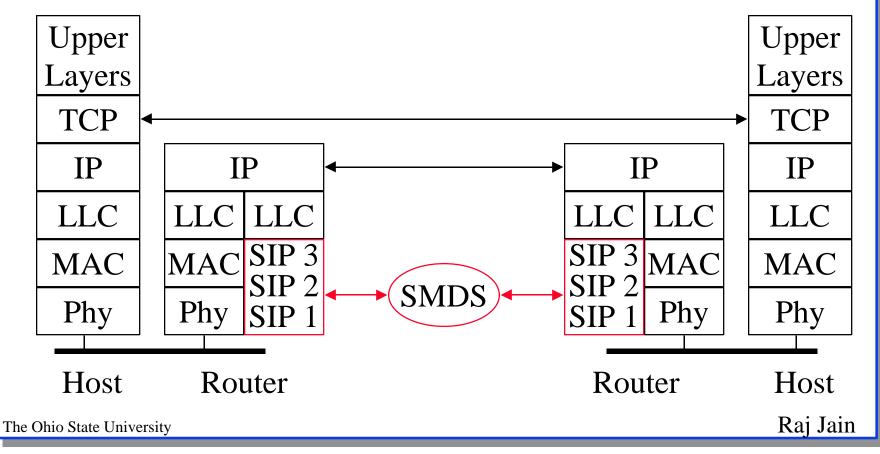
Dusage measurement

Raj Jain

#### What is SMDS?

- Switched: More like dial up then leased lines.
   Usage based billing.
- □ Multi-Megabit: 1.5 Mbps to 45 Mbps
- Data: For LAN interconnection
- Service: Underlying technology can change.
   Service does not.
- □ Connectionless Broadband Data Service (CBDS) in Europe



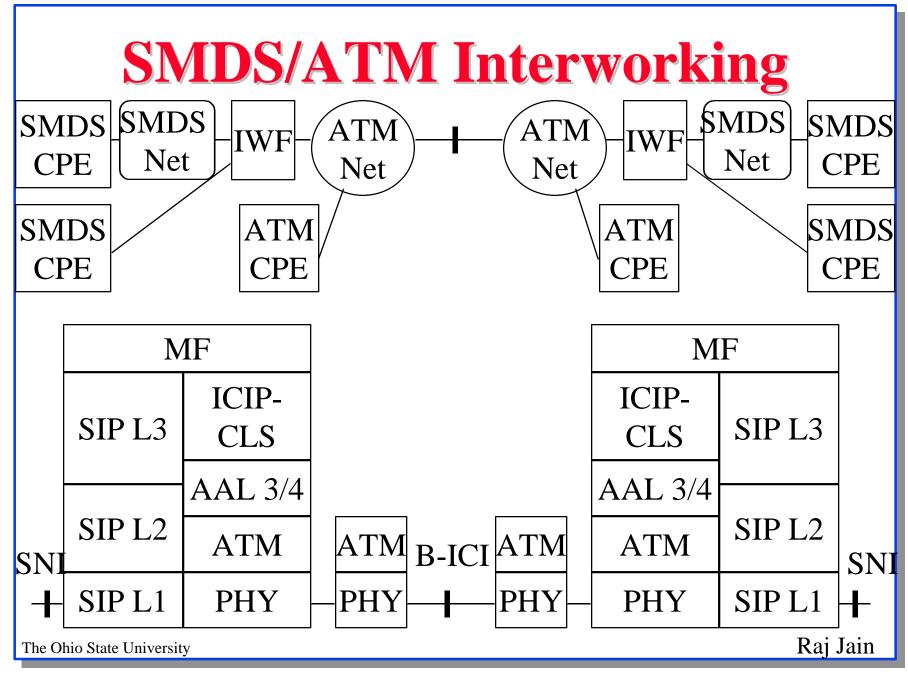

# **SMDS Objective**

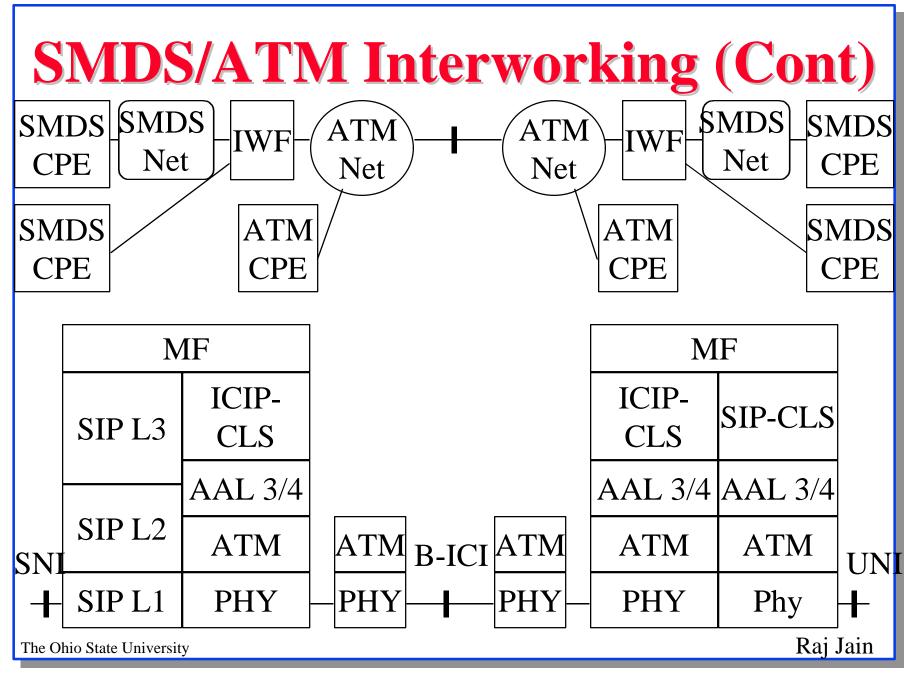
- Designed for LAN Interconnection
   ⇒ As many LAN features as possible
- Multicasting
- □ IEEE 802 compatible
- Connectionless: No connection setup through the network.
   Each packet carries an address.

| Destination address       | Source address |          |
|---------------------------|----------------|----------|
| 64 bits                   | 64 bits        |          |
|                           |                |          |
|                           |                |          |
| The Ohio State University |                | Raj Jain |

# **Routing with SMDS**

- □ SMDS network looks like a LAN
- □ RFC 1209 describes IP address to SMDS address translation





#### **SMDS over ATM**

- □ SIP Level 2 uses 53 byte cells
- Service Specific Convergence Sublayer (SSCS) = SIP Connectionless Service Layer (SIP\_CLS) = Null
- □ AAL 3/4 Common Part Convergence Sublayer

| SIP Level 3 | SIP_CLS      |
|-------------|--------------|
| SIP Level 5 | AAL 3/4 CPCS |
| SIP Level 2 | AAL 3/4 SAR  |
|             | ATM          |
| Phy         | Phy          |

The Ohio State University





## **B-ICI 2.0 vs PNNI 1.0**

- □ PNNI 1.0 parameters not specified in B-ICI 2.0:
  - □ ABR additional parameters
  - □ ABR setup parameters
  - Alternate ATM traffic descriptor (added for bandwidth negotiation)
  - Minimum acceptable ATM traffic descriptor (for negotiation)
  - □ Connected number
  - □ Connected subaddress
  - □ End-to-end transit delay
  - □ Extended QoS parameters

- □ Generic identifier support
- □ Narrowband bearer capability
- Narrowband high-layer compatibility
- □ Narrowband low-layer compatibility
- Progress indicator

# **B-ICI vs MTP Level 3**

- Only a subset of MTP-3 is used in B-ICI
- □ B-ICI does not require any STP functions
- □ B-ICI does not use the following MTP-3 functionality:
  - Differences between national and international
  - □ N-ISDN interworking
  - Propagation delay determination
  - □ User part availability procedure
  - Segmentation of messages for use of narrowband signaling links
  - □ MTP level 3 quasi-associated signaling
  - □ MTP level 3 restart procedure

## **B-ICI vs BISUP**

- **B**-ICI uses the following functions not in B-ISUP:
  - □ Messages:
    - + Exit message
  - □ Additional parameters:
    - + Carrier identification code
    - + Charge number
    - + Carrier selection information
    - + Outgoing facility identifier
    - + Originating link information
  - □ Additional procedures:
    - + Transit network selection



- □ B-ICI uses a subset of BISUP and MTP3
- □ Circuit emulation and ATM services interwork
- □ Frame relay and ATM services interwork
- **SMDS** and ATM services interwork

#### **B-ICI: References**

 ATM Forum, BISDN Inter Carrier Interface (B-ICI) Version 2.0, May 14, 1996. ftp://ftp.atmforum.com/pub/approved-specs/af-bici-0013.003.doc

# **BISUP: ITU/ANSI Specs**

- Q.2610, BISDN Usage of Cause and Location in BISDN User Part and DSS2, October 1994.
- Q.2650, Interworking Between the BISDN DSS2 Layer 3 Protocol and the SS7 BISUP, December 1993.
- Q.2722.1, BISDN, BISDN User part Network Node Interface Specification for Point-to-Multipoint call/Connection Control, July 1995.
- Q.2723, BISDN User Part Support of Additional Traffic Parameters, July 1995.
- Q.2726.1, BISDN, BISDN User Part ATM End System Address for Calling and Called Party, July 1995.
- Q.2761, BISDN User Part Functional Description, October 1994.
   The Ohio State University
   Raj Jain

48

- Q.2762, BISDN User Part General Functions of Messages and Signals, October 1994.
- Q.2763, BISDN User Part Formats and Codes, October 1994.
- Q.2764, BISDN User Part Basic Call Procedures, October 1994.
- Q.2110, B-ISDN ATM Adaptation Layer Service Specific Connection Oriented Protocol (SSCOP),
- Q.2140, B-ISDN ATM Adaptation Layer Service Specific Coordination Function for Signaling at the Network Node Interface (SSCF at NNI).
- Q.2144, B-ISDN ATM Adaptation Layer Layer Management for the SAAL at the NNI

The Ohio State University

- Q.2210, Message Transfer Part Level 3 Functions and Messages Using the Services of ITU-T Q.2140, May 1995 (TD PL/11-97).
- T1.648-1995, American National Standard for Telecommunications — Signaling System No. 7 — Broadband ISDN User Part.

# **SS7 ITU-T Specs**

- □ MTP: Q.701-704, Q.706, Q.707, Q.2210 (MTP level 3)
- **TUP:** Q.721-Q.725
- □ ISDN supplementary services: Q.730
- **DUP:** Q.741
- **ISUP:** Q.761-Q.764, Q.766
- **SCCP:** Q.711-Q.714,Q.716
- **Transactions capability (TCAP): Q.771-Q.775**
- Operation Maintenance and Administration part (OMAP): Q.795
- □ Singaling network structure: Q.705
- □ Numbering of International signaling point codes: Q.708

The Ohio State University

- □ Hypothetical signaling reference connection: Q.709
- **D** PBX application: Q.710
- □ Test specifications: Q.780-Q.783
- Monitoring and Measurement: Q.791

#### **SS7 References: Other**

- ANSI T1.111-1996, American National Standard for Telecommunications — Signaling System No. 7 — Message Transfer Part, 1996.
- ANSI T1.113-1995, American National Standard for Telecommunications — Signaling System No. 7 — ISDN User Part.
- Bellcore TR-NPL-000246, "Signaling System No. 7" Issue
   June 1991
- UNI for Point to multipoint connection control Q.2971

# **Signaling: ANSI Specs**

- T1.637-1994, American National Standard for Telecommunications — B-ISDN ATM Adaptation Layer — Service Specific Connection Oriented Protocol (SSCOP).
- T1.645-1995, American National Standard for Telecommunications — B-ISDN ATM Adaptation Layer — Service Specific Coordination Function for Support of Signaling at the Network Node Interface (SSCF at NNI).
- T1.652-1996, American National Standard for Telecommunications — B-ISDN ATM Adaptation Layer — Layer Management for the SAAL at the NNI.

### **Frame Relay: Books**

- □ W. Stallings, "ISDN and Broadband ISDN with Frame Relay and ATM," Prentice Hall, 1995, 581 pp.
- U. Black, "Frame Relay Networks," McGraw-Hill, 1994, 234 pp.
- M. Miller, "Analyzing Broadband Networks," M&T Books, New York, 1994, 522 pp.
- B. Kumar, "Broadband Communications," McGraw-Hill, 1995, 512 pp.
- D. Minoli, "Enterprise Networking: Fractional T1 to SONET, Frame Relay to BISDN," Artech House, 1993, 736 pp.

### **Frame Relay: Papers**

- B. Lisowski, "Frame Relay: What it is and How It Works," A Guide to Frame Relay, Supplement to Business Communications Review, October 1991.
- S. Taylor, "Plain Talk About Frame Relay," Networking Management, January 1992, pp. 72-78.
- □ I.M. Ali, "Frame Relay in Public Networks," IEEE Communications Magazine, March 1992, pp. 72-78.
- E. Garciamendez-Budar, "The Emergence of Frame Relay in Public Data Networks," Telecommunications, May 1992, pp. 24-32.
- C. Finn, "DataCom Buyer's Guide Frame Relay," Network World, February 3, 1992, pp. 31-37.

The Ohio State University

- J.T. Johnson, "Special Report-Frame Relay Products," Data Communications, May 1992, pp. 69-86.
- S. Hume and A. Seaman, "X.25 and Frame Relay: Packet Switched Technologies for Wide Area Connectivity."
   3TECH - the 3COM Technical Journal, Winter 1992, pp. 33-45.
- J.P. Cavanagh, "Applying Frame Relay Interface to Private Networks," IEEE Communications Magazine, March 1992, pp. 48-64.
- □ J. Brown and S. Fry, "Designs Make or Break Frame Relay Switches," Network World, September 14, 1992, pp. 39-60.
- □ J. Merritt, "The Future of Frame Relay," TE&M, January 1, 1992, pp. 33-45.
- N. Lippis, "Frame Relay Redraws the Map for Wide Area Networks," Data Communications, July 1990, pp. 80-94.

The Ohio State University

### **Frame Relay ITU standards**

- □ I.122, Framework for Frame Mode Bearer Services, 1993.
- □ I.223 (I.233?), Frame Mode Bearer Services, 1992.
- I.365.1: Frame Relaying Service Specific Convergence Sublayer (FR-SSCS), July 1993.
- I.370, Congestion management for the ISDN Frame Relaying Bearer Service, 1991.
- I.372, Frame Relay Bearer Service Network-to-network Interface Requirements, 1993.
- □ I.555, Frame Mode Bearer Services Interworking, 1992.
- Q.922, ISDN Data Link Layer Specification for Frame Mode Bearer Services, 1992.

- Q.933, Signaling Specifications for Frame Mode Call Control, 1992.
- ETSI prETS-300478, CBDS Over ATM, Framework and Protocol Specification at the UNI, Version 10/94.
- ETSI prETS-300479, CBDS Over ATM, NNI Protocol Specification, Version 10/94.

#### Frame Relay: ANSI/Bellcore standards

- T1.606: Frame Relay Bearer Service Architecture Framework and Service Description, and Addendum to ANSI T1.606, 1991.
- T1.617, Signaling Specification for Frame Relay Bearer Service for DSS1, 1991.
- T1.618, Core Aspects of Frame Protocol for Use with Frame Relay Bearer Service, 1991.
- T1.618: Data Transfer Protocol and Congestion Management, and ANSI T1.606 (Addendum), 1991.

- T1.5FR: Draft Frame Relay Data Communication Service -User Information Transfer Network Performance Parameters, T1A1.3/93-011, January 1993.
- TA-NWT-001327, Generic Requirements for Frame Relay Network Element Operations, Issue 1, Bellcore Technical Advisory, July 1993.
- TR-TSV-001370, Generic Requirements for Exchange Access Frame Relay PVC Service, Issue 1, Bellcore Technical Reference, May, 1993.

### **Frame Relay: FRF Documents**

- Available from Frame Relay Forum, http://frame-relay.indiana.edu/
- □ FRF.1, The User-Network Interface (UNI)
- □ FRF.2, The network-to-network interface (NNI)
- **GRF.3**, Multiprotocol encaptulation
- □ FRF.4, Switched virtual circuit (SVC)
- □ FRF.5, Frame relay/ATM network interworking
- **G** FRF.6, Frame relay service customer network management
- FRF.x Inter-Carrier Frame Relay Services: Recommendations and Guidelines, Version 1.0, Draft, October 26, 1992.

### Frame Relay: RFCs

- RFC1604, "Definitions of Managed Objects for Frame Relay Service" by T. Brown, 03/25/1994, 46 pp.
- RFC1586 "Guidelines for Running OSPF Over Frame Relay Networks" by O. deSouza, M. Rodrigues, 03/24/1994, 6 pp.
- RFC1490, "Multiprotocol Interconnect over Frame Relay" by T. Bradley, C. Brown, A. Malis, 07/26/1993, 35 pp.
- RFC1315, "Management Information Base for Frame Relay DTEs" by C. Brown, F. Baker, C. Carvalho, 04/09/1992, 19 pp.

- Internet Draft, "PPP in Frame Relay," 04/23/1994, <draftietf-pppext-frame-relay-03.txt>
- Internet Draft, "Management Information Base for Frame Relay DTEs (IP Over Large Public Data Networks)," 03/20/1995, <draft-ietf-iplpdn-frmib-dte-04.txt>

## **SMDS Standard Organizations**

- Bell Communications Research (Bellcore)
- □ SMDS Interest Group (SIG)
- European SMDS Interest Group (ESIG)
- European Telecommunications Standards Institute (ETSI)
- Pacific Rim Frame Relay/ATM/SMDS Interest Group (PR FASIG)
- □ Internet Engineering Task Force (IETF)
- □ IEEE 802: Remote bridging 802.1g and 802.6

#### **SMDS: Books**

- R.W. Klessig and K. Tesink, "Wide-Area Data Networking with Switched Multi-megabit Data Service," Prentice-Hall, 1995, 564 pp.
- M.A. Miller, "Analyzing Broadband Networks: Frame relay, SMDS, and ATM," M&T Books, New York, (ISBN 1-55851-389-2) 1994, Chapter 5-6, pp. 171-244.
- B. Kumar, "Broadband Communications: A professional's guide to ATM, Frame Relay, SMDS SONET, and B-ISDN," McGraw-Hill, 1994, Chapter 6-7, pp. 111-140.
- D. Minoli, "Enterprise Networking: Fractional T1 to SONET, Frame Relay to BISDN," Artech House, 1993, Chapter 12, pp. 687-713.

The Ohio State University

## **SMDS: Papers**

- C.F. Hemrick, R. Klessig and J.M. McRoberts, "Switched Multi-megabit Data Service and Early Availability via MAN Technology," IEEE Communications Magazine, April 1988.
- A. Lindstrom, "Frame Relay and SMDS Unlocking the Marketing Challenge", Telephony, November 21, 1994, pp. 28-32.
- F. Goldstein and J. Metzler, "Evaluating Network Services in the 1990s," Telecommunications, November 1994, pp. 47-62.
- □ G.H. Clapp, "LAN Interconnection Across SMDS," IEEE Network, September 1991, pp. 25-32.

The Ohio State University

- R. Sharer, "The SMDS Express," LAN Magazine, July 1993, pp. 51-58.
- P. Krishnaswamy and M. Ulema, "Developments in SMDS," ConneXions, October 1991, pp. 24-31
- D. Briere, "SMDS: The Silent Contender," Network World, November 29, 1993, pp. 39-49.
- A.J. Spiegleman, "SMDS has arrived," Networking Management, October 1992, pp. 40-45.
- T. Cox, F. Dix, C. Hemrick and J. McRoberts, "SMDS: The Beginning of WAN Superhighways," Data Communications, April 1991, pp. 105-110.

### **SMDS References: On-line**

- Switched Multi-megabit Data Service, http://www.cerf.net/smds.html
- q SMDS Interest group mailing list: sig@interop.com

The Ohio State University

### **SDMS: Bellcore Documents**

- TR-TSV-000772, Issue 1, "Generic System Requirements in support of Switched Multi-Megabit Data Service," May 1991.
- TR-TSV-000773, Issue 1, "Local Access System Generic Requirements, Objectives, and Interfaces in Support of Switched Multi-megabit Data Service," June 1991.
- TR-TSV-000774, Issue 1, "SMDS Operations Technology Network Element Generic Requirements," March 1992.
- TR-TSV-000775, Issue 1, "Usage Measurement Generic Requirements in Support of SMDS," June 1991.
- TA-TSV-001059, "Inter-switching System Interface Generic Requirements in Support of SMDS Service," December 1990.

The Ohio State University

- TR-TSV-001060, Switched Multi-megabit Data Service Generic Requirements for Exchange Access and Intercompany Serving Arrangements, Issue 1, Bellcore, Technical Reference, December 1991; Plus Revision 1, August 1992; plus Revision 2, March 1993.
- TA-TSV-001061, "Operations-technology network-element requirements for interswitch and exchange access,"
- TA-TSV-001062, Issue 2, "Generic Requirements for SMDS Customer network Management Service," February 1992.
- TA-TSV-001063, "Operations-technology generic Criteria in Support of Exchange-access SMDS and Intercompany serving arrangements," Issue 1, December 1992, Plus Revision 1, March 1993

- TA-TSV-001064, "SMDS Generic Criteria on Operations Interfaces (information model and usage),"
- TA-TSV-001238, Generic Requirements for SMDS on the 155.520 Mbit/s Multi-services Broadband ISDN Inter-Carrier Interface (B-ICI), Issue 1, Bellcore Technical Advisory, December 1992.
- TR-TSV-001239, Issue 1, "Generic Requirements for Low Speed Access to SMDS", June 1993.
- TA-TSV-001240, Issue 1, "Generic Requirements for Frame Relay Access to SMDS," June 1993.
- SR-TSV-002395, Switched Multi-megabit Data Service First Phase for Exchange Access and Intercompany Serving Arrangements, Issue 1, Bellcore Special Report, July 1992.

### **SMDS: SIG Documents**

SIG documents are available on-line <u>http://www.cerf.net/smds.html</u>

- SIG-TS-001/1991, "SMDS Data Exchange Interface Protocol," Revision 3.2, October 1991.
- SIG-TS-002/1991, "SMDS DXI Local Management Interface," Revision 2.0, May 19, 1992.
- □ SIG-TS-003/1992, "Implementation of Phase IV DECnet over SMDS," Revision 1.1, May 3, 1994.
- SIG-TS-004/1992, "Specification for Implementation of Connectionless OSI over SMDS," Revision 1.1, May 3, 1994.

- SIG-TS-005/1993, "Frame-Based Interface Protocol for SMDS Networks - Data Exchange Interface/Subscriber Network Interface, Revision 1.0. February 2, 1993.
- SIG-TS-006/1993, "Frame-Based Interface Protocol for Networks Supporting SMDS - SIP Relay Interface, Revision 1.0, February 2, 1993.
- SIG-TS-008/1994, "Protocol Interface Specification for Implementation of SMDS over an ATM-based Public UNI," Revision 1.0, May 3, 1994.
- SIG-TWG-019/1992, "SMDSTalk: Apple Talk over SMDS," August 1992.
- SIG-TWG-042/1993, "Transmission of Novell IPX Datagrams over the SMDS Service," Version 1.0, July 1993.

- SIG TWG-1993/043, (or, ATM Forum/94-149, or ESIG-TS-008/94), Protocol Interface Specification for Implementation of SMDS over an ATM-Based Public UNI, Revision 0.10, March, 1994.
- SIG Inter-Carrier Working Group Draft Specification, Guiding Principles for Ordering and Provisioning of Exchange Access SMDS, Revision 0.03, February 1993.
- SIG Inter-Carrier Working Group Draft Specification, Guiding Principles for SMDS Inter-Carrier Operations Management, Revision 0.02, January 1993.

#### **SMDS: ESIG Documents**

- ESIG-TS-001/1992, "SMDS Subscriber Network Access Facility Service and Level 2 and 3 Subscriber Network Interface Specification," Edition 1.1, 22 June 1992.
- ESIG-TS-002, "SMDS Subscriber Network Interface Level 1 Specification," Edition 1.0, ESIG-TS-002, June 1993.
- ESIG-TS-003/1993, "SMDS Customer Network Management Service and Access," March 1993.
- ESIG-TS-006/1993: Interconnection of Public Telecommunication Operator (PTO) Networks Supporting European SMDS, June, 1993.
- ESIG-TI-001, "A Comparison of SMDS and CBDS Service", June 1993.

#### **SMDS: ITU Documents+RFCs**

- CCITT I.364: Support of Broadband Connectionless Data Service on B-ISDN, June 1992.
- RFC1209, "The Transmission of IP Datagrams over the SMDS Service" by J. Lawrence, D. Piscitello, 03/06/1991, 11 pp.
- RFC1694, "Definitions of Managed Objects for SMDS Interfaces using SMIv2" by T. Brown, K. Tesink, 08/23/1994, 35 pp.

### Acronyms

| AAL                       | ATM Adaptation Layer                  |          |
|---------------------------|---------------------------------------|----------|
| ACM                       | Address Complete Message              |          |
| AESA                      | ATM End System Address                |          |
| Ai                        | Signaling ID Assigned by Switch A     |          |
| AIS                       | Alarm Indication Signal               |          |
| ANI                       | Automatic Number Identification       |          |
| ANM                       | Answer Message                        |          |
| ANSI                      | American National Standards Institute |          |
| ATM                       | Asynchronous Transfer Mode            |          |
| BBC                       | Broadband Bearer Capability           |          |
| BCOB                      | Broadband Connection Oriented Bearer  |          |
| The Ohio State University |                                       | Raj Jain |

#### BECN **Backward Explicit Congestion Notification** BHLI **Broadband High Layer Information** Signaling ID assigned by Switch B Bi **BISDN Inter Carrier Interface B-ICI** BISDN **Broadband Integrated Services Digital Network Blocking Acknowledgment Message** BLA **Broadband Low Layer Information** BLLI BLO **Blocking Message** BSS **Broadband Switching System** $\Box$ CAC **Connection Admission Control** CBDS **Connectionless Broadband Data Service Constant Bit Rate** CBR Consistency Check End Message CCE

- **CCEA** Consistency Check End Acknowledge Message
- CCRConsistency Check Request Message
- CCRA Consistency Check Request Acknowledge
- CdPN Called Party Number
- **CDV** Cell Delay Variation
- **CES** Circuit Emulation Service
- **CFN** Confusion Message
- **CgPN** Calling Party Number
- **CIP** Carrier Identification Parameter
- CLNS Connection-Less Network Service

#### CLSF Connection-Less Service Function

- CLP Cell Loss Priority
- **CPCS** Common Part Convergence Sublayer
- **CPE** Customer Premises Equipment
- CPG Call Progress Message
- **CRC** Cyclic Redundancy Check
- **CRS** Cell Relay Service
- **CSI** Carrier Selection Information
- **CS-2** Capability Set 2
- □ CS-2.1 Capability Set 2, Step 1
- DCC Data Country Code
- **DCLI** Destination Connection Link Identifier
- DE Discard Eligibility

#### DLCI Data Link Connection Identifier

- DSID Destination Signaling Identifier
- EAAddress Extension
- **EFCI** Explicit Forward Congestion Indication
- ESIG European SMDS Interest Group
- **ETSI** European Telecommunications Standards Inst.
- **EXM** Exit Message
- **FEBE** Far End Block Error
- FECN Forward Explicit Congestion Notification
- **Given Service Failure FERF** Far End Receive Failure
- **G** FRS Frame Relay Service
- HECHeader Error Control

| IAA        | IAM Acknowledgment Message            |
|------------|---------------------------------------|
| IAM        | Initial Address Message               |
| □ IAR      | IAM Reject Message                    |
| ICD        | International Code Designator         |
| □ ICI      | Inter Carrier Interface               |
| □ ICIP     | Inter Carrier Interface Protocol      |
| □ ICIP_CLS | <b>ICIP</b> Connectionless Service    |
| □ IE       | Information Element                   |
| □ IEC      | Inter Exchange Carrier                |
| □ ILEC     | Independent Local Exchange Carrier    |
| □ INC      | International Carrier                 |
| ITU        | International Telecommunication Union |
| <b>IWF</b> | Inter-Working Function                |
|            |                                       |

| □ LEC        | Local Exchange Carrier                 |
|--------------|----------------------------------------|
| □ MF         | Mapping Function                       |
| NNI          | Network Node Interface                 |
| □ NPC        | Network Parameter Control              |
| □ PCR        | Peak Cell Rate                         |
| D PDH        | Pleisiochronous Digital Hierarchy      |
| □ PLCP       | Physical Layer Convergence Procedure   |
| OCLI         | Origination Connection Link Identifier |
| OFI          | Outgoing Facility Identifier           |
| OLI          | Originating Line Information           |
| OSID         | Origination Signaling Identifier       |
| D PMD        | Physical Medium Dependent              |
| <b>D</b> PVC | Permanent Virtual Connection           |
|              |                                        |

| QoS          | Quality of Service                  |
|--------------|-------------------------------------|
| <b>RAM</b>   | Reset Acknowledgment Message        |
| <b>D</b> RDI | Remote Defect Indicator             |
| <b>REL</b>   | Release Message                     |
| □ RLC        | Release Complete Message            |
| <b>RSM</b>   | Reset Message                       |
| SAAL         | Signaling ATM Adaptation Layer      |
| □ SCR        | Sustained Cell Rate                 |
| □ SDH        | Synchronous Digital Hierarchy       |
| SID          | Signaling Identifier                |
| □ SIG        | SMDS Interest Group                 |
| <b>SMDS</b>  | Switched Multi-megabit Data Service |
| □ SNI        | Subscriber Network Interface        |

Raj Jain

| SONET        | Synchronous Optical NETwork                   |
|--------------|-----------------------------------------------|
| <b>D</b> SPE | Synchronous Payload Envelope                  |
| □ SSCF       | Service Specific Coordination Function        |
| <b>SSCOP</b> | Service Specific Connection Oriented Protocol |
| <b>SSCS</b>  | Service Specific Convergence Sublayer         |
| <b>G</b> STS | Synchronous Transport Signal                  |
| SVC          | Switched Virtual Connection                   |
| <b>D</b> TNS | Transit Network Selection                     |
| 🗅 UBA        | Unblocking Acknowledgment Message             |
| 🗅 UBL        | Unblocking Message                            |
| <b>UDT</b>   | Unstructured Data Transfer                    |
| 🗅 UNI        | User Network Interface                        |
| 🗅 UPA        | User Part Available Message                   |
|              |                                               |

- **UPT** User Part Test Message
- □ VBR Variable Bit Rate
- VCC Virtual Channel Connection
- □ VCI Virtual Channel Identifier
- □ VPC Virtual Path Connection
- VPCI Virtual Path Connection Identifier

### **B-ICI History**

- □ V1.1: PVC based approved in Sept'94
- □ V2.0: SVC, multipoint, VBR, NSAP address carriage
- **V2.1**:
- □ V2.1+: ABR

### **Broadband ISUP (BISUP)**

- □ Supports SVC and Switched VPs
- **CBR** and VBR (ABR in future)
- □ Forward and backward PCR (symmetric or assymetric)
- □ AAL 1,2,3/4, 5
- Maximum transit delay
- Point-to-point and point-to-multipoint

#### **SMDS Features**

- Address translation
- Carrier selection
- □ Source address validation
- Individually addressed packets
- Group addressed packets
- Address screening
- Access classes
- End-user blocking

## **SMDS Service Types**

- □ [Fig 11.1, page 245, BICI]
- Exchange SMDS: Local SMDS
- Exchange Access SMDS: IEC's customers use LEC's SMDS access service
- □ Inter-Exchange Access SMDS: Long distance SMDS

### **SMDS Specific Functions**

- **AAL 3/4**
- □ [fig 11.3, page 251, BICI]
- □ [Fig 11.6, page 260, BICI]
- □ [FIg 11.7-10, BICI]

#### **Current Issues in B-ICI**

- □ Soft PVC or PVP: Use signaling to setup PVC/PVP
- Switched virtual paths: supported in UNI4.0 but not in B-ICI 2.0
- □ Interworking between PNNI and B-ICI: Crankback, DTL

# Quiz

- T F Please check True/False
- 1. 
  Private and Public NNI's are same.
- 2. 
  B-ICI provides automatic topological discovery
- 3. **D** B-ICI is incompatible with SMDS and Frame relay
- 4. 🗖 🗖 B-ICI uses Q.2931 signaling messages
- 5. **D B**-ICI supports associated signaling only.
- 6. 🖵 🖵 B-ICI provides only point-to-point calls
- 7. 🗖 🗖 B-ICI does not provide congestion control
- 8. Frame relay allows connectionless communication.
- 9. SMDS allows connectionless communication
- 10. Frame relay's congestion control interopertes with B-ICI
- 11.  $\Box$  SMDS is more compatible with AAL5 than other AALs

The Ohio State University

Raj Jain