

ATM Adaptation Layer

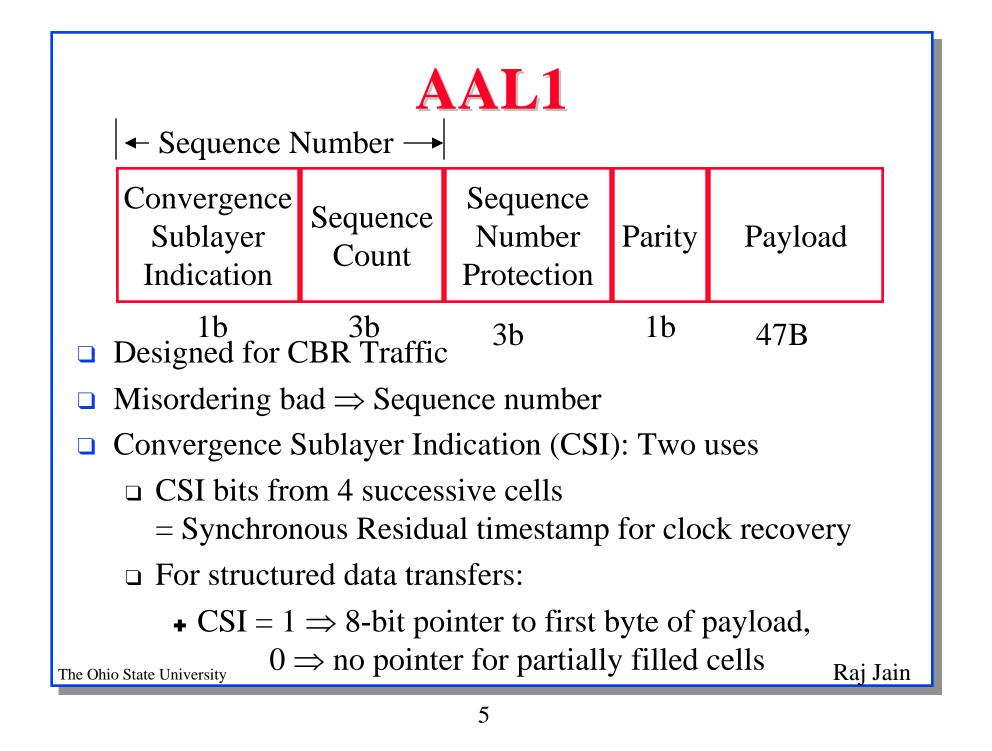
- Segmentation and Reassembly
- Convergence sublayer: Defines services AAL provides to higher layers.
- CS is broken into two parts:
 - □ Service Specific Convergence Sublayer (SSCS) Specific to video service, CBR, etc.

SSCS of AAL5 is empty.

□ Common Part Convergence Sublayer (CPCS)

Convergence	Service Specific Convergence Sublayer (SSCS)
Sublayer	Common Part Convergence Sublayer (CPCS)
	Segmentation and Reassembly
The Ohio State University	Rai Iain

The Onio State University


Original Classes of Traffic

	Class A	Class B	Class C	Class D	
Time	Rec	quired	Not Required		
Synch					
Bit Rate	Constant				
Connection	Connectio		Connect		
Mode		ionless			
AAL	AAL 1	AAL 2	AAL 3	AAL 4	
Examples	Circuit	Compressed	Frame	SMDS	
	emulation	Video	Relay		

AAL Types

- □ Initially four *classes* of AALs. One for each class.
- ❑ Later four *types* ⇒ An AAL type can service more than one class. USA wanted to use one type for both connection-oriented and connectionless data.
- □ AAL type 4 was based on DQDB.
- □ Type 4 could support both \Rightarrow Type 3/4 (combined).
- AAL type 2 was meant for variable bit rate video.
 VBR codecs do not exist yet.
- □ AAL 5 Started in ITU. Completed by ATM Forum.
- $\Box AAL 0 = No AAL = Straight from application to ATM$
- Signalling AAL (SAAL) uses retransmissions for guaranteed delivery

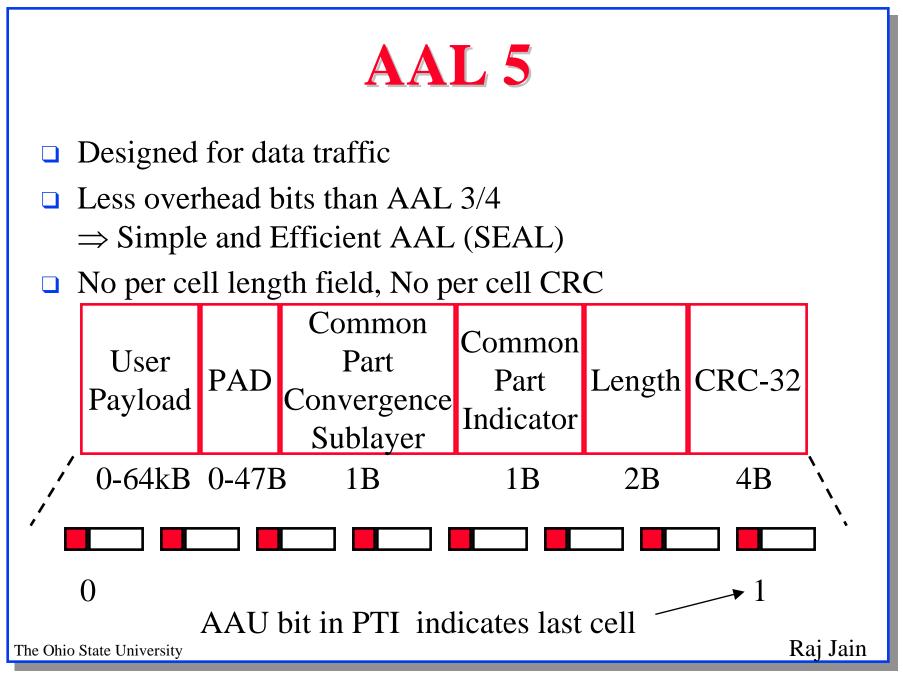
The Ohio State University

AAL Type 2									
Header	Seq #	Cell type	Payload	Length	CRC				
5B	4b	4b	45B	6b	10b ←	-Size			

- Designed for VBR Video/Audio
- □ Under development. One proposal above.
- **CRC** is used for error correction and detection

AAL 3/4

- Designed for Data (3 and 4 were merged)
- Connectionless or Connection Oriented:
 - Connectionless PDUs are handled independently
 - □ Connection-oriented PDUs may be multiplexed ⇒ up to 2^{10} logical connections per VC
- □ Message or Streaming Mode:
 - □ Message-oriented protocols provide blocks of data
 - Stream-oriented protocols provide a continuous stream of data presented in fixed size blocks.
 - Blocks may be as small as one byte. One block per cell.


AAL 3/4 Convergence Layer PDU Format Buffer Common Begin Align End Len-Allocation Payload PAD Part Tag Tag gth ment Indicator Size 1**B** 2**B** 0-9188B 0-3B 2**B** 1**B** 1**B** 1**B Cell Format** Multiplexing Seq Segment Length CRC Payload Indicator Type No ID 4b 10b 10b 2b 44B 6b Raj Jain The Ohio State University

AAL 3/4

- Common Part Indicator (CPI): Interpretation of the PDU.
 Only one interpretation is currently defined.
- □ Beginning Tag (Btag): PDU sequence number modulo 256
- End Tag (ETag): Must be same as BTag. Ensures the last cell and first cell are from the same PDU.
- Buffer Allocation Size: Max buffer size for reassembly.
 = PDU size for message mode.
 - \geq Payload size for streaming mode.
- □ Pad: Allows the trailer to begin on a 32-bit boundary
- Alignment: Makes the CPCS PDU a multiple of 32-bit
- Length: Length of the payload

The Ohio State University

Raj Jain

AAL 5

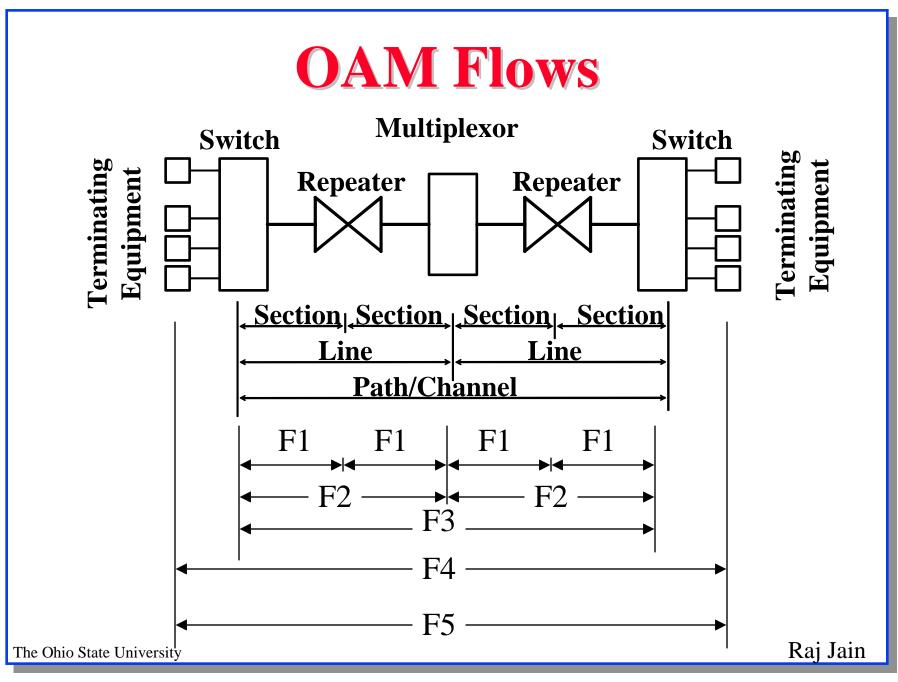
- □ No per cell overhead.
 - AAL 3/4 uses up 4 bytes per cell for overhead
- CPCS User-to-user Indication:
 - Transparently transfer user-to-user information.
- Common Part Indicator: Interpretation of the PDU.
 Only one interpretation is defined.
- □ Higher layers preallocate buffers \Rightarrow BAsize is not required
- □ No sequence number \Rightarrow Assume ordered delivery
- No MID field ⇒ no PDU multiplexing.
 End of PDU is marked by AAU bit in the header
- No LI field ⇒ pad is large enough to make PDU a multiple of 48 bytes (rather than 32-bits as in AAL 3/4)
 Dei I

The Ohio State University

Raj Jain

Payload Type Field Coding

- \Box 000 User data cell, no congestion, AAU = 0
- \Box 001 User data cell, no congestion, AAU = 1
- \Box 010 User data cell, congestion, AAU = 0
- \Box 011 User data cell, congestion, AAU = 1
- □ 100 Segment OAM F5 cell
- □ 101 End-to-end OAM F5 cell
- □ 110 Resource management cell
- □ 111 Reserved
- ATM-user-to-ATM-user (AAU) bit available for user-to-user indication

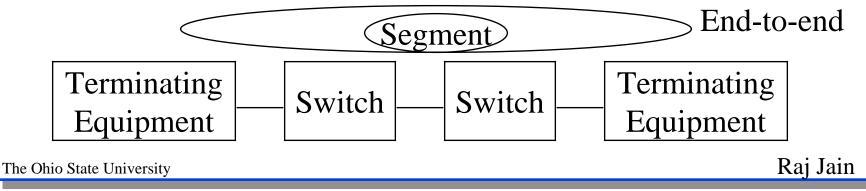

OAM cells may be inserted in any VC \Rightarrow In-band signaling

The Ohio State University

Raj Jain

Operation Administration and Maintenance (OA&M)

- □ For supervision, testing, and performance monitoring
- Loopbacks for maintenance
- ITU TS standard uses CMIP
- Organized into 5 hierarchical levels
 - □ Virtual Channel (F5)
 - □ Virtual Path (F4)
 - □ Transmission Path (F3)
 - Digital Section (F2)
 - □ Regenerator Section (F1)



OAM Flows

- **F5**: Between VC endpoints
- **F4**: Between VP endpoints
- □ **F3**: Between elements that perform assembling, disasembling of payload, header, or control
- □ **F2**: Between section end-points. Performs frame synchronization.
- **F1**: Between regeneration sections.

Segment vs End-to-End Flows

- □ End-to-end flows are seen by the user
- Segment flows are not seen by the user
- Segment = Single VP/VC link or a group of VP/VC within one network provider
- □ Both types of flows can be VP flows (F4) or VC flows (F5)
- F5 flows are identified by PTI = 4 or 5.
 VPI/VCI same as in user's flow.
- F4 flows are identified by VC = 3 or 4.
 VPI same as in user's flow.

Preassigned VPI/VCI Values

- □ 0/0 Unassigned or Idle
- □ 0/1 Metasignaling
- \Box 0/3 Segment F4 Flow
- □ 0/4 End-to-end F4 flow
- □ 0/5 Signaling
- □ 0/15 SMDS
- □ 0/16 Interim Layer Management Interface (ILMI)

References

- ITU-T Recommendation I.363, "B-ISDN ATM Adaptation Layer (AAL) Specification," March 1993.
- T. Suzuki, "ATM Adaptation Layer Protocol," IEEE Communications Magazine, April 1994.