
1

Configurable Middleware for Distributed
Real-Time Systems with Aperiodic and Periodic

Tasks
Yuanfang Zhang, Christopher D. Gill, Member, IEEE, Chenyang Lu, Member, IEEE

Abstract—Different distributed real-time systems (DRS) must handle aperiodic and periodic events under diverse sets of requirements.
While existing middleware such as Real-Time CORBA has shown promise as a platform for distributed systems with time constraints,
it lacks flexible configuration mechanisms needed to manage end-to-end timing easily for a wide range of different DRS with both
aperiodic and periodic events. The primary contribution of this work is the design, implementation and performance evaluation of the
first configurable component middleware services for admission control and load balancing of aperiodic and periodic event handling
in DRS. Empirical results demonstrate the need for, and the effectiveness of, our configurable component middleware approach in
supporting different applications with aperiodic and periodic events, and providing a flexible software platform for DRS with end-to-end
timing constraints.

Index Terms—Component middleware, dynamic real-time task allocation, load balancing and admission control.

✦

1 INTRODUCTION

Many distributed real-time systems (DRS) must handle
a mix of aperiodic and periodic events, including ape-
riodic events with end-to-end deadlines whose assur-
ance is critical to the correct behavior of the system.
Requirements for increased software productivity and
quality motivate the use of open distributed object com-
puting (DOC) middleware such as CORBA, rather than
building applications entirely from scratch using propri-
etary methods. The use of CORBA middleware has in-
creased significantly in DRS domains such as aerospace,
telecommunications, medical systems, distributed inter-
active simulations, and computer-integrated manufac-
turing, which are are also characterized by stringent
quality of service requirements [1]. For example, in an in-
dustrial plant monitoring system, an aperiodic alert may
be generated when a series of periodic sensor readings
meets certain hazard detection criteria. This alert must
be processed on multiple processors within an end-to-
end deadline, e.g., to put an industrial process into a
fail-safe mode. User inputs and other sensor readings
may trigger other real-time aperiodic events.

While traditional real-time middleware solutions such
as Real-Time CORBA [2] and Real-Time Java [3] have
shown promise as distributed software platforms for
systems with time constraints, existing middleware sys-
tems lack the flexibility needed to support DRS with
diverse application semantics and requirements. For ex-

• Y. Zhang, C. Gill and C. Lu are with the Department of Computer Science
and Engineering, Washington University in St. Louis, MO, 63130.
E-mail: {yfzhang, cdgill, lu}@cse.wustl.edu

This research has been supported in part by NSF grant CCF-0615341 (EHS)
and NSF CAREER award CNS-0448554.

ample, load balancing is an effective mechanism for
handling variable real-time workloads in a DRS. How-
ever, its suitability for DRS highly depends on their
application semantics. Some digital control algorithms
(e.g., proportional-integral-derivative control) for phys-
ical systems are stateful and hence not amenable for
frequent task re-allocation caused by load balancing,
while others (e.g., proportional control) do not have
such limitations. Similarly, job skipping (skipping the
processing of certain instances of a periodic task) is a
useful for dealing with transient system overload. While
job skipping is not suitable for certain critical control
applications in which missing one job may cause catas-
trophic consequences on the controlled system, other
applications ranging from video reception to telecom-
munications may be able to tolerate varying degrees of
job skipping [4].

Therefore, a key open challenge for DRS is to de-
velop a flexible middleware infrastructure that can be
easily configured to support the diverse requirements of
different DRS. Specifically, middleware services such as
load balancing and admission control must support a
variety of alternative strategies (algorithms and inputs
corresponding to those algorithms). Furthermore, the
configuration of those strategies must be supported in
a flexible yet principled way, so that system developers
are able to explore alternative configurations without
choosing invalid configurations by mistake.

Providing middleware services with configurable
strategies thus faces several important challenges: (1) ser-
vices must be able to provide configurable strategies, and
configuration tools must be added or extended to allow
configuration of those strategies; (2) the specific criteria
that distinguish which service strategies are preferable

2

must be identified, and applications must be categorized
according to those criteria; and (3) appropriate combina-
tions of services’ strategies must be identified for each
such application category, according to its characteristic
criteria. To address these challenges, and thus to enhance
support for diverse DRS with aperiodic and periodic
events, we have designed and implemented a new set
of component middleware services including end-to-end
event scheduling, admission control, and load balancing.
We have also developed configuration tools to integrate
these service components for each particular application
according to its specific criteria.
Research Contributions: In this work, we have (1) de-
veloped what is to our knowledge the first set of config-
urable component middleware services supporting mul-
tiple admission control and load balancing strategies for
handling aperiodic and periodic events; (2) developed a
novel component configuration pre-parser and interfaces
to configure real-time admission control and load bal-
ancing services flexibly at system deployment time; (3)
defined categories of distributed real-time applications
according to specific characteristics, and related them
to suitable combinations of strategies for our services;
and (4) provided a case study that applies different
configurable services to a domain with both aperiodic
and periodic events, offers empirical evidence of the
overheads involved and the trade-offs among service
configurations, and demonstrates the effectiveness of our
approach in that domain. Our work thus significantly
enhances the applicability of real-time middleware as a
flexible infrastructure for DRS.

Section 2 introduces the middleware systems and
scheduling theory underlying our approach. Section 3, 4
and 5 present our middleware architecture, configurable
strategies, and component implementations for support-
ing end-to-end event handling in DRS. Section 6 de-
scribes our new configuration engine extensions, which
can flexibly configure different strategies for our services
according to each application’s requirements. Section 7
evaluates the performance of our approach, including
trade-offs among different service strategy combinations,
and characterizes the overheads introduced by our ap-
proach. Section 8 presents a survey of related work, and
we offer concluding remarks in Section 9.

2 BACKGROUND

Task Model: We consider DRS comprised of physical
systems generating aperiodic and periodic events that
must be processed on distributed computing platforms
subject to end-to-end deadlines. Henceforth the process-
ing of a sequence of related events is referred to as
a task. A task Ti is composed of a chain of subtasks
Ti,j(1 ≤ j ≤ ni) located on different processors. The first
subtask Ti,1 of a task Ti is triggered by a periodic timer
event or an aperiodic event generated by the system.
Upon completion, a subtask Ti,j pushes another event
which triggers its successor subtask Ti,j+1. Each subtask

of a periodic task is a sequence of subjobs. Each periodic
task is a sequence of jobs with each job being a chain
of subjobs of each of the task’s subtasks. The arrival
time of a job or subjob is when it becomes available
for execution. The release time of a job or subjob occurs
after its arrival, following its admission by the admission
controller when it is released for execution by the system.
Every job of a task must be completed within an end-
to-end deadline that is its maximum allowable response
time. The period of a periodic task is the interarrival
time of consecutive subjobs of the first subtask of the
periodic task. An aperiodic task does not have a period.
The interarrival time between consecutive subjobs of its
first subtask may vary widely and, in particular, can be
arbitrary small. The worst-case execution time of every
subtask, the end-to-end deadline of every task, and the
period of every periodic task in the system are known.

Component Middleware: Component middleware plat-
forms are an effective way of achieving customizable
reuse of software artifacts. In these platforms, components
are units of implementation and composition that collab-
orate with other components via ports. The ports isolate
the components’ contexts from their actual implemen-
tations. Component middleware platforms provide exe-
cution environments and common services, and support
additional tools to configure and deploy the components.

In previous work we developed the first instantiation
of a middleware admission control service supporting
both aperiodic and periodic events [5] (on TAO, a
widely used Real-Time CORBA middleware). However,
our previous admission control service only included
a fixed set of strategies. As is shown in Section 4, a
more diverse and configurable set of inter-operating
services and service strategies is needed to support DRS
with different application semantics. Unfortunately, it
is difficult to extend implementations that rely directly
on distributed object middleware, such as our original
admission control service. Specifically, in those middle-
ware systems changing the supported strategy requires
explicit changes to the service code itself, which can be
tedious and error-prone in practice.

The Component-Integrated ACE ORB (CIAO) [6] im-
plements the Light Weight CORBA Component Model
(CCM) specification [7] and is built atop the TAO [8]
real-time CORBA object request broker (ORB). CIAO
abstracts common real-time policies as installable and
configurable units. However, CIAO does not support
aperiodic task scheduling, admission control or load
balancing. To develop a flexible infrastructure for DRS,
in this work we develop new admission control and load
balancing services, each with a set of alternative service
strategies on top of CIAO. Furthermore, we extended
CIAO to configure and manage both services.

DAnCE [9] is a QoS-enabled component deployment
and configuration engine that implements the Object
Management Group (OMG)’s Light Weight CCM De-
ployment and Configuration specification [7]. DAnCE

3

parses component configuration/deployment descrip-
tions and automatically configures and deploys ORBs,
containers, and server resources at system initialization
time, to enforce end-to-end QoS requirements. How-
ever, DAnCE does not provide certain essential features
needed to configure our admission control and load
balancing services correctly, e.g., to disallow invalid
combinations of our service strategies.

Aperiodic Scheduling: Aperiodic tasks have been stud-
ied extensively in real-time scheduling theory, including
work on aperiodic servers that integrate scheduling of
aperiodic and periodic tasks [10]. New schedulability
tests based on aperiodic utilization bounds [11] and a
new admission control approach [12] also were intro-
duced recently. In our previous work [5], we imple-
mented and evaluated admission control services for
two suitable aperiodic scheduling techniques (aperiodic
utilization bound [11] and deferrable server [13]) on
TAO. Since aperiodic utilization bound (AUB) has com-
parable performance to deferrable server, and requires
less complex scheduling mechanisms in middleware, we
focus exclusively on the AUB technique in this paper.
Our experiences with AUB reported in this paper show
how configurability of other techniques can be integrated
within real-time component middleware in a similar
way.

With the AUB approach, three kinds of service strate-
gies must be made configurable to provide flexible and
principled support for diverse DRS with aperiodic and
periodic tasks: (1) when admissibility is evaluated (to
trade-off the granularity and thus the pessimism of
admission guarantees), (2) when the contributions of
completed subjobs of subtasks can be removed from
the schedulability analysis used for admission control
(to improve accuracy of the schedulability analysis and
thus reduce pessimistic denials of feasible tasks), and (3)
when jobs of tasks can be assigned to different processors
(to balance load and improve system performance).

In AUB [11], the set of current tasks S(t) at any
time t is defined as the set of tasks that have released
jobs but whose deadlines have not expired. Hence,
S(t) = {Ti|Ai ≤ t < Ai + Di}, where Ai is the release
time of the first subjob of the current job for task Ti,
and Di is the relative deadline of the current job of
task Ti. The synthetic utilization of processor j at time
t, Uj(t), is defined as the sum of individual subtask
utilizations on the processor, accrued over all current
tasks. According to AUB analysis, a system achieves its
highest schedulable synthetic utilization bound under
the End-to-end Deadline Monotonic Scheduling (EDMS)
algorithm under certain assumptions. Under EDMS, a
subtask has a higher priority if it belongs to a task
with a shorter end-to-end deadline. Note that AUB does
not distinguish aperiodic from periodic tasks. All tasks
are scheduled using the same scheduling policy. Under
EDMS task Ti will meet its deadline if the following

schedulability condition holds [11]:
ni∑

j=1

UVij
(1 − UVij

/2)

1− UVij

≤ 1 (1)

where Vij is the jth processor that task Ti visits. A
task (or an individual job) can be admitted only when
this condition continues to be satisfied for all currently
admitted tasks and this task. Since applications may or
may not tolerate job skipping, whether this condition
is checked only when the first job of a task arrives or
whenever each job arrives should be configurable.

According to the definition of the current task set in
AUB, a task remains in the current task set even if it has
been completed, as long as its deadline has not expired.
To reduce the pessimism of the AUB analysis, a resetting
rule is introduced in [11]. When a processor becomes
idle, the contribution of all completed subjobs to the
processor’s synthetic utilization can be removed without
affecting the correctness of the schedulability condition
(inequality 1). Since the resetting rule introduces extra
overhead, whether the contribution of only completed
aperiodic subjobs or of both completed aperiodic and
periodic subjobs can be removed early should be made
configurable. Under AUB-based schedulability analy-
sis, load balancing also can effectively improve system
performance [11]. However some applications require
persistent state preservation between jobs of the same
task, so it also should be made configurable whether a
task can be re-allocated to a different processor for each
job.

3 MIDDLEWARE ARCHITECTURE

To support end-to-end aperiodic and periodic tasks in
diverse distributed real-time applications, we have de-
veloped a new middleware architecture. The key feature
of our approach is a configurable component framework that
can be customized for different sets of aperiodic and
periodic tasks. Our framework provides configurable ad-
mission controller (AC), load balancer (LB), and idle resetter
(IR) components which interact with application compo-
nents and task effector (TE) components. The AC compo-
nent provides on-line admission control and schedulabil-
ity tests for tasks that arrive dynamically at run time. The
LB component provides an acceptable task assignment
plan to the admission controller if the new arrival task
is admissible. Each IR component reports all completed
subjobs on one processor to the AC component when
the processor becomes idle, so the AC component can
remove their contributions from the calculated synthetic
utilization, to reduce the pessimism of the AUB analysis
at run-time according to the idle resetting rule. On each
processor a TE component notifies the AC component
when new jobs arrive, and releases admitted jobs.

Figure 1 illustrates our distributed middleware ar-
chitecture. All processors are connected by the TAO
Object Request Broker (ORB)’s federated Event Channel
(EC) [14], indicated by EC/ORB in Figure 1. Black arrows

4

Task Manager

EC/ORB

AC

LB

Application

Processor 1

EC/ORB

T
i,1

TE
 IR

Application

Processor 2

EC/ORB

T
i,2

TE
 IR

Application

Processor 3

EC/ORB

T
i,1

TE
 IR

Application

Processor 4

EC/ORB

T
i,2

TE
 IR

Application

Processor 5

EC/ORB

T
i,3

TE
 IR

Original

Component

Duplicate

Component

Original Task

Allocation

Task

Reallocation

Fig. 1. Component Middleware Architecture: black arrows
represent an event push or method call; original and dupli-
cate components are alternatives for executing the same
subtask; assume task Ti arrives at application processor
3.

in Figure 1 represent an EC event being pushed or an
ORB method call being sent. The EC pushes events
through local event channels, gateways, and remote
event channels to the events’ consumers sitting on dif-
ferent processors. We deploy one AC component and
one LB component which cooperate to perform task
management on one processor, and one IR component
and one TE component on each of multiple application
processors.

Figure 1 shows an example end-to-end task Ti com-
posed of 3 consecutive subtasks, Ti,1, Ti,2 and Ti,3,
executing on separate processors. Ti,1 and Ti,2 have
duplicates on other application processors. An original
component and its duplicate(s) are alternative appli-
cation components that can execute the same subtask,
with the actual subtask assignment decided by the LB
component at run time. For sake of discussion, assume
task Ti arrives at application processor 3. The TE com-
ponent on that processor pushes a “Task Arrival” event
to the AC component and holds the task until it receives
an “Accept” event from the AC component. The AC
component and LB component decide whether to accept
the task, and if so, where to assign its subtasks. The
solid lines and the dashed lines show two possible
assignments of subtasks. If the first subtask Ti,1 is not
assigned to the processor where Ti arrived, we call this
assignment a task re-allocation.

An advantage of this centralized AC/LB architec-
ture is that it does not require synchronization among
distributed admission controllers. In contrast, in a dis-
tributed task management architecture the AC compo-

nents on multiple processors may need to coordinate and
synchronize with each other in order to make correct
decisions, because admitting an end-to-end task may
affect the schedulability of other tasks located on the
multiple affected processors.

A potential disadvantage of the centralized architec-
ture is that the AC component may become a bottleneck
and thus affect scalability. However, the computation
time of the schedulability analysis is significantly lower
than task execution times in many DRS, which alleviates
the scalability limitations of a centralized solution [5].

Centralized task management also could become a
single point of failure, negatively impacting system
availability and survivability. Admission control and
load balancing could be replicated using existing ac-
tive and passive fault-tolerance techniques for real-time
systems [15] [16]. However, addressing a complete set
of fault tolerant task management issues is beyond the
scope of this paper and is left as a potential future exten-
sion of this work. In summary, while our real-time com-
ponent middleware approach can be extended to use a
more distributed task management architecture, we have
adopted a centralized approach with less complexity and
overhead, which allows us to focus on achieving system
flexibility through component middleware services.

4 MAPPING DRS CHARACTERISTICS TO MID-
DLEWARE STRATEGIES

A key contribution of this paper is categorizing charac-
teristics that are common to a reasonably representative
set of DRS applications, and mapping them to suitable
middleware service strategies. In this section, we present
a set of criteria used to categorize DRS characteristics,
and analyze how to map those criteria to different ser-
vice strategies supported by our middleware.

4.1 DRS Characteristics

We use four criteria to distinguish how DRS with aperi-
odic and periodic tasks can be supported: Job Skipping
(criterion C1); Overhead Tolerance (criterion C2); State
Persistency (criterion C3); and Component Replication
(criterion C4).
Job Skipping means that some jobs of a task are ex-
ecuted while other jobs of the same task may not be
admitted. Some applications, such as video streaming,
and other loss-tolerant forms of sensing can tolerate job
skipping, while in critical control applications, once a
task is admitted, all its jobs should be allowed to execute.
Overhead Tolerance depends on an application’s spe-
cific overhead constraints: we characterize different
sources of overhead for our services in Section 7.3 so that
developers of each application can decide whether those
overheads would be excessive or acceptable if traded for
improved schedulability.
State Persistency means that states are required to be
preserved between jobs of a same task. For proportional

5

control systems [17], task are stateless and only require
current information, so jobs can be re-allocated dynam-
ically. However, for integral control systems [17], tasks
require incremental calculation and are not suitable for
job re-allocation.
Component Replication depends on an application’s
throughput requirements. Replication is used here to re-
duce latency through load distribution, not for fault tol-
erance purposes. Only those applications with replicated
components can support task re-allocation, whereas
those that cannot be replicated (e.g. due to constraints
on the locality of sensors or actuators) cannot support
task re-allocation.

According to these different application criteria, the
AC, IR and LB components can be configured to use
different strategies. For each component, which strategy
is more suitable depends on these criteria. Table 1 shows
how these criteria help to classify DRS applications,
which in turn allows selection of corresponding middle-
ware service strategies. We have designed all strategies
with corresponding configurable attributes, and provide
a configuration pre-parser and a component configura-
tion interface (described in Section 6) to allow developers
to select and configure each service flexibly, according to
each application’s specific needs. We now examine the
different strategies for each component and the trade-
offs among them.

4.2 Admission Control (AC) Strategies

Admission control offers significant advantages for sys-
tems with aperiodic and periodic tasks, by providing
on-line schedulability guarantees to tasks arriving dy-
namically. Our AC component supports two different
strategies: AC per Task and AC per Job. AC per Task
performs the admission test only when a task first arrives
while AC per Job performs the admission test whenever
a job of the task arrives. Only applications satisfying
criterion C1 are suitable for the second strategy, since it
may not admit some jobs. Moreover, the second strategy
reduces pessimism at the cost of increasing overhead.
The application developer thus needs to consider trade-
offs between overhead and pessimism in choosing a
proper configuration.
AC per Task: Considering the admission overhead and
the fixed inter-arrival times of periodic tasks, one strat-
egy is to perform an admission test only when a peri-
odic task first arrives. Once a periodic task passes the
admission test, all its jobs are allowed to be released
immediately when they arrive. This strategy improves
middleware efficiency at the cost of increasing the pes-
simism of the admission test. In the AUB analysis [11],
the contribution of a job to the synthetic utilization of
a processor can be removed when the job’s deadline
expires (or when the CPU idles if the resetting rule is
used and the subjob has been completed). If admission
control is performed only at task arrival time, however,
the AC component must reserve the synthetic utilization

of the task throughout its lifetime. As a result, it cannot
reduce the synthetic utilization between the deadline of a
job and the arrival of the subsequent job of the same task,
which may result in pessimistic admission decisions [11].
AC per Job: If it is possible to skip a job of a periodic
task (criterion C1), the alternative strategy to reduce
pessimism is to apply the admission test to every job
of a periodic task. This strategy is practical for many
systems, since the AUB test is highly efficient when used
for AC, as is shown in Section 7.3 by our overhead
measurements.

4.3 Idle Resetting (IR) Strategies

Without the AUB resetting rule, a job remains in the
current set even if it has been completed, as long as
its deadline has not expired. Therefore, the use of the
resetting rule can remove the contribution of completed
subjobs earlier than the deadline, which reduces the pes-
simism of the AUB schedulability test [5], [11]. There are
three strategies to configure IR components in our ap-
proach, according to an application’s overhead tolerance
(criterion C2). The first of these three strategies avoids
the resetting overhead, but is the most pessimistic. The
third strategy removes the contribution of completed
aperiodic and periodic subjobs more frequently than the
other two strategies. Although it has the least pessimism,
it introduces the most overhead. The second strategy of-
fers a trade-off between the first and the third strategies.
No IR: The first strategy is to use no resetting at all, so
that if the subjobs complete their executions, the contri-
butions of completed subjobs to the processor’s synthetic
utilization are not removed until the job deadline. This
strategy avoids the resetting overhead, but increases the
pessimism of schedulability analysis.
IR per Task: The second strategy is that each IR com-
ponent records completed aperiodic subjobs on one pro-
cessor. Whenever the processor is idle, a lowest priority
thread called an idle detector begins to run, and reports
the completed aperiodic subjobs to the AC component
through an “Idle Resetting” event. To avoid reporting
repeatedly, the idle detector only reports when there is
a newly completed aperiodic subjob whose deadline has
not expired.
IR per Job: The third strategy is that each IR component
records and reports not only the completed aperiodic
subjobs but also the completed subjobs of periodic sub-
tasks.

4.4 Load Balancing (LB) Strategies

Under AUB-based AC, load balancing can effectively
improve system performance in the face of dynamic
task arrivals [11]. We use a heuristic algorithm to assign
subtasks to processors at run-time, which always assigns
a subtask to the processor with the lowest synthetic
utilization among all processors on which the application

6

TABLE 1
Criteria and Middleware Service Strategies

No Yes Some
C1:Job Skipping AC per Task AC per Job
C2:Overhead Tolerance No IR IR per Job IR per Task
C3:State Persistency LB per Job LB per Task
C4:Component Replication No LB LB

component corresponding to the task has been repli-
cated (criterion C4). 1 Since migrating a subtask between
processors introduces extra overhead, when we accept
a new task, we only determine the assignment of that
new task and do not change the assignment plan for
any other task in the current task set. This service also
has three strategies. The first strategy is suitable for ap-
plications which cannot satisfy criterion C4. The second
strategy is most applicable for applications which satisfy
both C4 and C3. The third strategy is most suitable for
applications which only satisfy C4, but can not satisfy
criterion C3.
No LB: This strategy does not perform load balancing.
Each subtask does not have a replica and is assigned to
a particular processor.
LB per Task: Each task will only be assigned once, at its
first arrival time. This strategy is suitable for applications
which must maintain persistent state between any two
consecutive jobs of a periodic task.
LB per Job: The third strategy is the most flexible. All
jobs from a periodic task are allowed to be assigned to
different processors when they arrive.

4.5 Combining AC, IR and LB Strategies

When we use the AC, IR and LB components together,
their strategies can be configured in 18 different combi-
nations. However, some combinations of the strategies
are invalid. The AC-per-Task/IR-per-Job combination is
not reasonable, because per job idle resetting means the
synthetic utilizations of all completed subjobs of periodic
subtasks are to be removed from the central admission
controller, but per task admission control requires that
the admission controller reserves the synthetic utilization
for all accepted periodic tasks, so an accepted periodic
task does not need to go through admission control
again before releasing its jobs. These two requirements
are thus contradictory, and we can exclude the corre-
sponding configurations as being invalid. Removing this
invalid AC/IR combination means removing 3 invalid
AC/IR/LB combinations, so there are only 15 reason-
able combinations of strategies left. With this degree
of complexity in making correct configuration design
decisions, an application developer would benefit from
cognitive support in configuring the different strate-
gies. An advantage of our middleware architecture and

1. The focus here is not on the load balancing algorithms themselves.
Our configurable middleware may be easily extended to incorporate
LB components implementing other load balancing algorithms accord-
ing to each application’s needs.

configuration engine is that they allow application de-
velopers to configure middleware services to achieve
any valid combination of strategies, while disallowing
invalid combinations, up front as we discuss in Section 6.

As Figure 2 shows, the configuration choices can be
divided into axes of strategy configurability for each of
the three middleware services: admission control, idle
resetting and load balancing. Different configuration op-
tions in each of these axes and the impact they may have,
as well as conflicting configurations, are thus delineated
thoroughly and as we discuss in Section 6 form the
basis for automated support of application developers
in configuring the services our middleware provides.

L
o

ad
 B

al
an

ci
n

g

Idle Resetting

N
o

n
e

P
er

 T
as

k

P
er

 J
o

b

None Per Task Per Job

Admission

Control

 Job

 Per

 Task

Per

Fig. 2. Strategy Dimensions of Middleware Services

5 COMPONENT IMPLEMENTATION

Configurable component middleware standards, such as
the CORBA Component Model (CCM) [18], can help to
reduce the complexity of developing DRS by defining
a component-based programming paradigm. They also
help by defining a standard configuration framework for
packaging and deploying reusable software components.
The Component Integrated ACE ORB (CIAO) [19] is
an implementation of the Light Weight CCM speci-
fication [7] that is suitable for DRS. To support the
different service strategies described in Section 4 and to
allow flexible configuration of suitable combinations of
those strategies for a variety of applications, we have
implemented admission control, idle resetting, and load
balancing services in CIAO as configurable components.

7

Each component provides a specific service with con-
figurable attributes and clearly defined interfaces for
collaboration with other components and can be instanti-
ated multiple times with the same or different attributes.
Component instances can be connected together at run-
time through appropriate ports to form a DRS.

As Figure 3 illustrates, we have designed and im-
plemented 6 configurable components to support dis-
tributed real-time aperiodic and periodic end-to-end
tasks using ACE/TAO/CIAO version 5.6/1.6/0.6. The
dashed vertical line in Figure 3 reflects the logical parti-
tioning of task management and application processing
components into separate processes. In our implemen-
tation, the task manager could run on an application
processor, or on a separate processor as shown in Fig-
ure 1 in Section 3. For efficiency local interactions are
implemented via method calls, while for flexibility re-
mote interactions are implemented via federated event
handling.

The Task Effector (TE) component holds the arriv-
ing tasks, waits for the AC component decision and
releases tasks. The Admission Control (AC) component
decides whether to accept tasks. The Load Balancing (LB)
component decides task allocations so as to balance the
processors’ synthetic utilizations. The First/Intermediate
(F/I) Subtask component executes the first or an inter-
mediate subtask at a given priority. The Last Subtask
component executes the last subtask at a given priority.
The Idle Resetting (IR) component reports the completed
subjobs when a processor goes idle.

Each component may have several configurable at-
tributes, so that it can be instantiated with a different crit-
icality and execution time (for application components)
or a different strategy (for AC, IR and LB components).
As we discussed in Section 3, our admission control
and load balancing approaches adopt a centralized ar-
chitecture, which employs one AC component instance
and one LB component instance running on a central
processor (called the “Task Manager” processor).

Each application processor contains one instance of a
TE component and one instance of an IR component.
The TE component on each processor reports the arrival
of tasks on that processor to the AC component, which
then releases or rejects the tasks based on the admission
control policy. Each end-to-end task is implemented
by a chain of F/I Subtask components and one Last
Subtask component. We now describe the behavior of
each component in detail.
Task Effector (TE) Component: When a task arrives, the
TE component puts it into a waiting queue and pushes
a “Task Arrival” event to the AC component. When
the TE component receives an “Accept” event from the
AC component, the corresponding task waiting in the
queue will be released immediately. The TE component
has two configurable attributes. One is a processor ID,
which distinguishes TE component instances deployed
on different processors. The other is the Per-job/Per-task
attribute, which indicates whether before releasing any

job of a periodic task the TE component will hold it until
receiving an “Accept” event from the AC component. If
the attribute is set to be Per-task, when a periodic task
is admitted all subsequent jobs from that periodic task
can be released immediately. These attributes can be set
at the creation of a TE component instance and also may
be modified at run-time.
First/Intermediate (F/I) and Last Subtask Components:
Both the F/I and Last Subtask components execute appli-
cation subtasks. The only difference between these two
kinds of components is that the F/I Subtask component
has an extra port that publishes “Trigger” events to ini-
tiate the execution of the next subtask. The Last Subtask
component does not need this port, since the last subtask
does not have a next subtask. Each instance of these
kinds of components contains a dispatching thread that
executes a particular subtask at a specified priority. Both
kinds of components have three configurable attributes.
The first two attributes are the task execution time and
priority level, which are normally set at the creation
of the component instances as specified by application
developers. The third attribute is No-IR, IR-per-task, or
IR-per-job, which means the resetting rule either is not
enabled or is enabled per task or per job respectively.
Per-task means the Idle Resetting component will not
be notified when periodic subjobs complete. Since each
job of an aperiodic task can be treated as an indepen-
dent aperiodic task with one release, the idle resetting
component is notified when aperiodic subjobs complete.
Both F/I Subtask and Last Subtask components call the
“Complete” method of the local IR component instance
when needed. The dispatching threads in a F/I Subtask
or a Last Subtask component are triggered by either a
“Release” method call from the local TE component in-
stance or a “Trigger” event from a previous F/I Subtask
component instance.
Idle Resetting (IR) Component: It receives “Complete”
method calls from local F/I or Last Subtask compo-
nents, and pushes ”Idle Resetting” events to the AC
component. It has one attribute, the processor ID, which
distinguishes component instances sitting on different
processors.
Admission Control (AC) Component: It consumes
“Task Arrival” events from the TE components and “Idle
Resetting” events from the IR components. It publishes
“Accept” events to the TE components to allow task
releases. It makes “Location” method calls on the LB
component to ask for proposed task assignment plans.
The AC component has a No-LB/LB-per-task/LB-per-
job attribute, which indicates whether load balancing is
enabled, and if it is enabled whether it is per task or per
job. If that attribute is set to LB-per-task, once a periodic
task is admitted its subtask assignment is decided and
kept for all following jobs. However, aperiodic tasks do
not have this restriction as they are only allocated at their
single job arrival time. A value of LB-per-job means the
subtask assignment plan can be changed for each job of

8

Location

Complete

Complete

Release

Accept

Task

Arrival

Real-Time ORB

Federated EC
 Federated EC

AC

Effec

tor

F/I

Subt

Last

Subt

IR

LB

Component

Container

Event

Source/Sink

Receptacle/Facet

Release
 Trigger

Idle Resetting

Task Manager
 Application Processor

Fig. 3. Component Implementation

an accepted periodic task.
Load Balancing (LB) Component: It receives “Loca-
tion” method calls from the AC component, which fetch
assignment plans for particular tasks. The LB compo-
nent tries to balance the synthetic utilization among
all processors, and may modify a previous allocation
plan when a new job of the task arrives. It returns
an assignment plan that is acceptable and attempts to
minimize differences among synthetic utilizations on all
processors after accepting that task. Alternatively, the LB
component may tell the AC component that the system
would be unschedulable if the task were accepted.

6 DEPLOYMENT AND CONFIGURATION

While our configurable components represent an im-
portant step towards flexible middleware services for
handling aperiodic and periodic events, DRS develop-
ers still face the challenges of choosing the best com-
binations of strategies and assembling and deploying
the components, which are tedious and error-prone
if performed by hand. Therefore, we have developed
a tool that automates the selection, deployment, and
configuration of these components. Our tool has two
key advantages: (1) it allows application developers to
specify the characteristics of the DRS and automatically
map them to suitable middleware strategies, and (2) it
identifies incorrect combinations of service strategies to
prevent erroneous middleware configurations. CIAO’s
realization of the OMG’s Light Weight Deployment and
Configuration specification [7] is called the Deploy-
ment and Configuration Engine (DAnCE) [9]. DAnCE
can translate an XML-based assembly specification into
the execution of deployment and configuration actions
needed by an application. Assembly specifications are
encoded as descriptors which describe how to build DRS
using available component implementations. Informa-
tion contained in the descriptors includes the number

of processors, what component implementations to use,
how and where to instantiate components, and how to
connect component instances in an application.
Front-end Configuration Engine: Although tools such
as CoSMIC [20] can help generate the XML files, those
tools do not consider the configuration requirements of
the new services we have created. We therefore provide
a specific configuration engine (illustrated in Figure 4)
that acts as a front-end to DAnCE, to configure our
services for application developers who require config-
urable aperiodic scheduling support. This extension to
DAnCE helps to alleviate complexities associated with
deploying and configuring our services. The application
developer first provides a workload specification file
which describes each end-to-end task and where its sub-
tasks execute. Our front-end configuration engine asks
the application developer to specify the characteristics
of the DRS, via a simple textual interface as shown in
Figure 5.

(1) Does your application allow job skipping?

 [yes (Y), no (N)]

(2) Does your application have replicated components?

[yes (Y), no (N)]

(3) Does your application require state persistence?

[yes (Y), no (N)]

(4) How m
uch extra overhead can you accept
 as it

poten
tially improves schedulability?

[none (N), some per task (PT), some per job (PJ)]

Fig. 5. Questions to Determine Characteristics for Strat-
egy Selection

The front-end configuration engine parses the work-
load specification file and automatically maps applica-
tion characteristics specified by the developer to proper
configuration settings for the admission control, idle
resetting and load balancing services. Finally an XML-
based deployment plan is generated, which can be rec-
ognized by DAnCE. As an example, Figure 4 shows

9

<instance id="Central-AC">

 <configProperty>

 <name>LB_Strategy</name>

 <value>

 <type>

 <kind>tk_string</kind>

 </type>

 <value>

 <string>PT</string>

 </value>

 </value>

 </configProperty>

 </instance>
1. N

2. Y

3. Y

 4. PT

Workload

Configuration

Engine

XML-based

deployment

plan

Parse the

plan

Component Repository

Deploy components on each node

Select

Create

component

server

Create

Container

Deployment::

NodeImpleme

ntationInfo

Deployment::

DeploymentPlan
DAnCE

Plan

Launcher

DAnCE

Execution

Manager

Front End

DAnCE

Node

Manager

Node

Application

Manager

set_configura

tion
DAnCE

Node

Application

Container

Fig. 4. Front End Engine and its Interaction with DAnCE

one set of answers to those four questions. Based on
those answers, the AC, IR and LB services should all
be configured using per-task (PT) strategy. Figure 4 also
shows part of the XML file generated by our configu-
ration engine, with the LB strategy setting of PT, which
is due to the developer’s answers to second and third
questions.

To enforce end-to-end deadline monotonic scheduling,
the F/I Subtask and Last Subtask components both
expose an attribute called “priority”. When our config-
uration engine reads the workload specification file, it
assigns priorities in order of tasks’ end-to-end deadlines,
and writes this priority information into the generated
XML deployment plan, to be parsed by DAnCE later.
Our front-end configuration engine not only generates
well formed assembly specifications, according to the
application developers’ instructions, but it also performs
a feasibility check on configuration settings, to ensure
correct handling of dependent constraints. For example,
per task admission control with per job idle resetting
would be contradictory, as we mentioned in Section 4.5.
Since a developer might specify incompatible service
configuration combinations, our approach should be able
to detect and disallow them. If application characteristics
are not provided by the developers, our configuration
engine also can supply default configuration settings,
i.e., per task admission control, idle resetting and load
balancing.

We have used the <configproperty> feature of
DAnCE to extend the set of attributes that can be con-
figured flexibly according to other configuration settings.
For example, if the load balancing service is configured
using the per-task strategy, the corresponding property
of the AC component should also be set to per-task.

DAnCE’s Plan Launcher parses the XML-based deploy-
ment plan and stores the property name (LB Strategy)
and value in a data structure (Property) which is a field
of the AC instance definition structure. The definitions of
the AC instance and all other component instances com-
prise a deployment plan (Deployment::DeploymentPlan)
that is then passed to DAnCE’s Execution Manager.
The Execution Manager propagates the deployment plan
data structure to DAnCE’s Node Application Manager,
which parses it into an initialization data structure
(NodeImplementationInfo). Finally, the Node Applica-
tion Manager passes the initialization data structure
to the Node Application. When the Node Application
installs the AC component instance, it also initializes
the LB Strategy attribute of the AC component through
a standard Configurator interface (set configuration),
using the initialization data structure it received.

7 EXPERIMENTAL EVALUATIONS

To validate our approach and to evaluate the perfor-
mance, overheads and benefits resulting from it, we
conducted a series of experiments which we describe
in this section. The experiments were performed on
a testbed consisting of six machines connected by a
100Mbps Ethernet switch. Two are Pentium-IV 2.5GHz
machines with 1G RAM and 512K cache each, two
are Pentium-IV 2.8GHz machines with 1G RAM and
512K cache each, and the other two are Pentium-IV
3.4GHz machines with 2G RAM and 2048K cache each.
Each machine runs version 2.4.22 of the KURT-Linux
operating system. One Pentium-IV 2.5GHz machine is
used as a central task manager where the AC and LB
components are deployed. The other five machines are

10

used as application processors on which TE, F/I Subtask,
Last Subtask and IR components are deployed.

7.1 Random Workloads

We first randomly generated 10 sets of 9 tasks, each
including 4 aperiodic tasks and 5 periodic tasks. The
number of subtasks per task is uniformly distributed
between 1 and 5. Subtasks are randomly assigned to
5 application processors. Task deadlines are randomly
chosen between 250 ms and 10 s. The periods of periodic
tasks are equal to their deadlines. The arrival of aperi-
odic tasks follows a Poisson distribution. The synthetic
utilization of every processor is 0.5, if all tasks arrive
simultaneously. Each subtask is assigned to a processor,
and has a duplicate sitting on a different processor
which is randomly picked from the other 4 application
processors.

In this experiment, we evaluated all 15 reasonable
combinations of strategies, since it is convenient to
choose and run different combinations with the help of
our configuration engine. We ran 10 task sets using each
combination and compared them. Each task set ran for 5
minutes for each combination. The performance metric
we used in these evaluations is the accepted utilization
ratio, i.e., the total utilization of jobs actually released
divided by the total utilization of all jobs arriving. To be
concise, we use capital letters to represent strategies: N
when a service is not enabled in this configuration; T
when a service is enabled for each task; and J when a
service is enabled for each job of a task. In the following
figures, a three element tuple denotes each combination
of settings for the three configurable services: first for
the admission control service, then for the idle resetting
service, and last for the load balancing service.

0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
ac

ce
p

te
d

 u
ti

li
za

ti
on

 ra
ti

o

Fig. 6. Accepted Utilization Ratio for Different (AC, IR,
LB) Combinations

The bars in Figure 6 show the average results over the
10 task sets. As is shown in Figure 6, enabling either idle
resetting or load balancing can increase the utilization
of tasks admitted. Moreover, the experiment shows that

enabling IR-per-job (* J *) significantly outperforms the
configurations which enable IR-per-task (* T *) or not
at all (* N *). This is because IR-per-job removes the
contribution of all completed periodic subjobs to the
synthetic utilizations which greatly helps to admit more
jobs. Enabling all three services per job (J J J) performed
comparably to the other (J J *) configurations (averaging
higher though the differences were not significant) and
outperformed all other configurations significantly, even
though the J J J configuration introduces the most over-
head. We also notice the difference is small when we only
change the configuration of the LB component and keep
the configuration of other two services the same. This
is because when we randomly generated these 10 task
sets, the resulting synthetic utilization of each processor
was similar. To examine the potential benefit of the
LB component, we designed another experiment that is
described in the next section.

7.2 Imbalanced Workloads

In the second experiment, we use an imbalanced work-
load. It is representative of a dynamic DRS in which a
subset of the system processors may experience heavy
load. For example, in an industrial control system, a
blockage in a fluid flow valve may cause a sharp increase
in the load on the processors immediately connected to
it, as aperiodic alert and diagnostic tasks are launched.
In this experiment, we divided the 5 application proces-
sors into two groups. One group contains 3 processors
hosting all tasks. The other group contains 2 processors
hosting all duplicates. 10 task sets are randomly gener-
ated as in the above experiment, except that all subtasks
were randomly assigned to 3 application processors in
the first group and the number of subtasks per task is
uniformly distributed between 1 and 3. The synthetic
utilization for any of these three processors is 0.7. Each
subtask has one replica sitting on one processor in the
second group.

Each of 10 task sets was run for the 15 different valid
strategy setting combinations, and for each combination
we then averaged the accepted utilization ratio over
the 10 results. We varied the load balancing strategy
from from none to per task, then to per job, for each
of the 5 valid combinations of admission control and
idle resetting strategies. As figure 7 shows, under the
conditions our experiment studied LB-per-Task provides
a significant improvement when compared with the
results without LB. However, there is not much dif-
ference between LB-per-Task vs. LB-per-Job. Note that
since there are 5 application processors and a total task
utilization of 2.1, if we can assign tasks almost evenly
among processors through load balancing all tasks are
schedulable (as indicated by the accepted utilizations
near 1.0 in Figure 7 for J J T and J J J). However,
two processors in the second group are not used when
load balancing is disabled, resulting in a lower accepted
utilization ratio with J J N.

11

0

0.2

0.4

0.6

0.8

1
A

ve
ra

g
e

ac
ce

p
te

d
 u

ti
li

za
ti

on
 ra

ti
o

Fig. 7. LB Strategy Comparison for Different (AC, IR, LB)
Combinations

From the two experiments described in this section
and in Section 7.1, we found that configuring different
strategies according to application characteristics can
have a significant impact on the performance of a DRS
with aperiodic and periodic events. Our design of the
AC, IR and LB services as easily configurable com-
ponents allows application developers to explore and
select valid configurations based on the characteristics
and requirements of their applications, and based on the
trade-offs indicated by these empirical results.

7.3 Overheads of Service Components

To evaluate the efficiency of our component-based mid-
dleware services, we measured overheads using 3 of
the processors to run application components and an-
other processor to run the AC and LB components.
The workload is randomly generated in the same way
as described in Section 7.1, except that the number of
subtasks per task is uniformly distributed between 1 and
3. Each experiment ran for 5 minutes. We examined the
different sources of overhead that may occur when a
task arrives at TE component TE1, after which AC and
LB components run the task in component TE1 or re-
allocate it to another TE component, TE2. Figure 8 shows
how the total delay for each service includes the costs of
operations located in several components. Table 2 lists
the operation numbers shown in Figure 8 to provide a
detailed accounting of the delays resulting from different
combinations of service configurations.

To calculate the delays for AC without LB, AC with
LB without re-allocation and LB without re-allocation,
we can simply calculate the interval between when
one task arrives on a processor and when the task is
released on the processor. However, if the LB component
re-allocates the first subtask on a different processor
using its duplicate, as in the case of AC with LB, it
is difficult to determine a precise time interval between
when one task arrives on one processor and when it is
released on another processor, because our experiment

TE1

1

5

AC

LB

3

4

2

2

IR

7

8

TE2

6

2

2

1. hold the task, push event

2. communication delay

3. generate acceptable

 deployment plan

4. apply the admission test

5. release the task

6. release the duplicate task

7. report completed subtask

8. update synthetic utilization

Fig. 8. Sources of Overhead/Delay

TABLE 2
Service Overheads (µs)

mean max
AC without LB (1+2+4+2+5) 1114 1248
AC with LB (1+2+3+2+5) 1116 1253
(no re-allocation)
AC with LB (1+2+3+2+6) 1201 1327
(re-allocation)
LB (no re-allocation) (1+2+3+2+5) 1113 1250
LB (re-allocation) (1+2+3+2+6) 1198 1319
IR (on AC side) (8) 17 18
IR (other part) (7+2) 662 683
Communication Delay (2) 322 361

environment does not provide sufficiently high resolu-
tion time synchronization among processors, which is an
inherent limitation for many DRS. We therefore measure
the overheads on all involved processors individually,
then add them together plus twice the communication
delays (step 2 in Figure 8) between the processors. Three
processors are involved: the processor where the task
arrives (step 1), the central task manager processor (steps
3) and the processor where the duplicate task is released
(step 6). We ran this experiment using KURT-Linux ver-
sion 2.4.22, which provides a CPU-supported timestamp
counter with nanosecond resolution. By using instru-
mentation provided with the KURT-Linux distribution,
we can obtain a precise accounting of operation start and
stop times and communication delays. To measure the
communication delay between the application processor
and the admission control processor on our experimental
platform, we pushed an event back and forth between
the application processor and the admission control pro-
cessor 1000 times, then calculated the mean and max
value among 1000 results. We then divided the round
trip time by 2 to obtain the approximate mean and max-
imum communication delays between the application
processor and the admission control processor.

The total delay for LB when reallocation happens, is
measured in the same way as for the case of AC with
LB with reallocation. To calculate the delay from the
IR component, we divide its execution into two parts.

12

The small overhead on the admission control component
must be counted in the overall delay. The large overhead
on the application processor and the communication
delay only happen during CPU idle time, and although
it represents an additional overhead induced by the
IR component, it does not affect performance, which
is why we report the two parts separately in Table 2.
From the results in Table 2, we can see that all of the
delays induced by our configurable services are less
than 2 ms, which is acceptable for many DRS. For
applications with tight schedules, a developer can make
further decisions on how to configure services based on
this delay information and based on the effects of the
different configurations on task management, which we
discussed in Section 4.

8 RELATED WORK

In this section we consider related work on middleware
designed for managing applications quality of service
(QoS) requirements, of which real-time requirements
are a subset. We first describe approaches that are not
based on component middleware, and then consider
component-based approaches.
QoS-aware Middleware: Quality Objects (QuO) [21],
[22] is an adaptive middleware framework developed by
BBN Technologies that allows developers to use aspect-
oriented software development techniques to separate
the concerns of QoS programming from application
logic. A Qosket is the unit of encapsulation and reuse
in QuO. QuO emphasizes dynamic QoS provisioning
whereas our approach emphasizes static QoS provi-
sioning. The dynamicTAO [23] project applies reflec-
tive techniques to reconfigure Object Request Broker
(ORB) policies and mechanisms at run-time. Similar
to dynamicTAO, the Open ORB [24] project also aims
at highly configurable and dynamically reconfigurable
middleware platforms to support applications with dy-
namic requirements. Zhang et al. [25] also use aspect-
oriented techniques to improve the customizability of the
middleware core infrastructure at the ORB level.
QoS-aware Component Middleware: Component mid-
dleware architectures have been leveraged to enable
meta-programming of QoS attributes in a number of
ways. For example, aspect-oriented techniques can be
used to plug in different behaviors [26] into the con-
tainers that host components. This approach is similar
to ours in that it provides mechanisms to configure
system attributes at the middleware level. de Miguel [27]
further develops QoS-enabled containers by extending
an EJB container interface to allow the exchange of
QoS-related information among component instances.
To take advantage of this QoS-container, a component
must implement QoSBean and QoSNegotiation inter-
faces. However, this requirement increases dependence
among component implementations. The QoS Enabled
Distributed Objects (Qedo) [28] project is another effort
to make QoS support an integral part of the CORBA

Component Model (CCM). Qedo’s extensions to the
CCM container interface and Component Implementa-
tion Framework (CIF) require component implementa-
tions to interact with the container QoS interface and
negotiate the level of QoS contract directly. Although
this approach is suitable for certain applications it tightly
couples the QoS provisioning and adaptation behaviors
into the component implementation, which may limit the
reusability of components. In comparison, our approach
explicitly avoids this coupling and composes real-time
attributes declaratively. There have been several other
efforts to introduce QoS attributes in conventional com-
ponent middleware platforms. The FIRST Scheduling
Framework (FSF) [29] proposes to compose several ap-
plications and to schedule the available resources flexibly
while guaranteeing hard real-time requirements. A real-
time component type model [30], which integrates QoS
facilities into component containers also was introduced
based on the EJB and RMI specifications. A schedula-
bility analysis algorithm [31] for hierarchical scheduling
systems has been introduced for dependent components
which interact through remote procedure calls. None of
these approaches provides the configurable services for
mixed aperiodic and periodic end-to-end tasks offered
by our approach.

9 CONCLUSIONS

The work presented in this paper represents a promis-
ing step towards configurable middleware services for
diverse DRS applications with aperiodic and periodic
events. We have identified a common set of key char-
acteristics representative of many DRS applications, and
have shown how to map those characteristics to suitable
strategies for real-time middleware task management
services. We have designed and implemented config-
urable middleware components that provide effective
on-line admission control and load balancing and can
be easily configured and deployed on distributed com-
puting platforms. The front-end configuration engine
we have developed can automatically process specified
application characteristics to generate a corresponding
deployment plan for DAnCE, thus making it easier
for developers to select suitable configurations, and to
avoid invalid ones. Results of the experiments we have
conducted to evaluate our approach show that (1) our
configurable component middleware approach is well
suited for supporting different applications with alterna-
tive characteristics and requirements, and (2) the delays
imposed by our component middleware services are
below 2 ms on a representative Linux platform.

The purpose of this research is to demonstrate the
efficacy of allowing a variety of strategy combinations
to be configured, to support applications with different
criteria. While application-specific studies would cer-
tainly offer further insight into the trade-offs among
strategy configurations in each application domain, the
random task sets used in this paper demonstrate the

13

potential benefit of having such flexibility. The results
presented in Section 7 encourage further investigation
as future work into how well specific task sets from
real-time application domains such as real-time image
transmission [32], shipboard computing [11], and avion-
ics mission computing [33] can be supported using the
guidance offered in Section 4.1.

REFERENCES

[1] Douglas C. Schmidt, “Successful Project Deployments of ACE
and TAO,” www.cs.wustl.edu/∼schmidt/TAO-users.html, Wash-
ington University.

[2] Real-Time CORBA Specification, 1.1 ed., Object Management Group,
Aug. 2002.

[3] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and
M. Turnbull, The Real-Time Specification for Java. Addison-Wesley,
2000.

[4] G. Koren and D. Shasha, “Skip-Over: Algorithms and Complexity
for Overloaded Systems that Allow Skips,” in RTSS, 1995.

[5] Y. Zhang, C. Lu, C. Gill, P. Lardieri, and G. Thaker, “Middleware
Support for Aperiodic Tasks in Distributed Real-Time Systems,”
in RTAS, 2007.

[6] Institute for Software Integrated Systems, “Component-Integrated
ACE ORB (CIAO),” www.dre.vanderbilt.edu/CIAO/, Vanderbilt
University.

[7] Light Weight CORBA Component Model Revised Submission, OMG
Document realtime/03-05-05 ed., Object Management Group,
May 2003.

[8] Institute for Software Integrated Systems, “The ACE ORB (TAO),”
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[9] G. Deng, D. C. Schmidt, C. Gill, and N. Wang, QoS-Enabled Com-
ponent Middleware for Distributed Real-Time and Embedded Systems.
CRC Press, 2007.

[10] L. Sha et al., “Real Time Scheduling Theory: A Historical Per-
spective,” The Journal of Real-Time Systems, vol. 10, pp. 101–155,
2004.

[11] T. F. Abdelzaher, G. Thaker, and P. Lardieri, “A Feasible Region for
Meeting Aperiodic End-to-end Deadlines in Resource Pipelines,”
in ICDCS, 2004.

[12] B. Andersson and C. Ekelin, “Exact Admission-Control for Inte-
grated Aperiodic and Periodic Tasks,” in RTAS, 2005.

[13] J. Strosnider, J. P. Lehoczky, and L. Sha, “The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Real-Time
Environments,” IEEE Transactions on Computers, vol. 44, no. 1, pp.
73–91, 1995.

[14] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The design and
performance of a real-time CORBA event service,” in OOPSLA,
1997.

[15] P. Narasimhan, T. Dumitras, A. Paulos, S. Pertet, C. Reverte,
J. Slember, and D. Srivastava, “MEAD: Support for Real-Time
Fault-Tolerant CORBA,” Concurrency and Computation: Practice and
Experience, 2005.

[16] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, and
D. C. Schmidt, “Adaptive Failover for Real-time Middleware with
Passive Replication,” in RTAS, 2009.

[17] F. H. Raven, Automatic Control Engineering, 5th ed. New York,
New York: Mcgraw-Hill, 1994.

[18] CORBA Components, OMG Document formal/2002-06-65 ed., Ob-
ject Management Group, June 2002.

[19] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian, “Config-
uring Real-time Aspects in Component Middleware,” in DOA,
2004.

[20] A. Gokhale, “Component Synthesis using Model Integrated Com-
puting,” www.dre.vanderbilt.edu/cosmic, 2003.

[21] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal, “Packaging Quality
of Service Control Behaviors for Reuse,” in ISORC, 2002.

[22] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support
for Quality of Service for CORBA Objects,” Theory and Practice of
Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[23] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for
Reflective Middleware,” Communications of the ACM, vol. 45, no. 6,
pp. 33–38, June 2002.

[24] G. S. Blair and G. Coulson and A. Andersen and L. Blair and
M. Clarke and F. Costa and H. Duran-Limon and T. Fitzpatrick
and L. Johnston and R. Moreira and N. Parlavantzas and K.
Saikoski, “The Design and Implementation of Open ORB 2,” IEEE
Distributed Systems Online, vol. 2, no. 6, June 2001.

[25] C. Zhang and H.-A. Jacobsen, “Resolving Feature Convolution in
Middleware Systems,” in OOPSLA, 2004.

[26] D. Conan, E. Putrycz, N. Farcet, and M. DeMiguel, “Integration
of Non-Functional Properties in Containers,” WCOP, 2001.

[27] M. A. de Miguel, “QoS-Aware Component Frameworks,” in
IWQoS, 2002.

[28] FOKUS, “Qedo Project Homepage,” http://qedo.berlios.de/.
[29] M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J. M. Drake,

G. Fohler, P. Gai, M. G. Harbour, G. Guidi, J. J. Gutiérrez,
T. Lennvall, G. Lipari, J. M. Martı́nez, J. L. Medina, J. C. Palencia,
and M. Trimarchi, “FSF: A Real-Time Scheduling Architecture
Framework,” in RTAS, 2006.

[30] M. A. de Miguel, “Integration of QoS Facilities into Component
Container Architectures,” in ISORC, 2002.

[31] J. L. Lorente, G. Lipari, and E. Bini, “A Hierarchical Scheduling
Model for Component-Based Real-Time Systems,” in WPDRTS,
2006.

[32] X. Wang, M. Chen, H.-M. Huang, V. Subramonian, C. Lu, and
C. Gill, “Control-based adaptive middleware for real-time image
transmission over bandwidth-constrained networks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 19, no. 6, pp. 779–
793, June 2008.

[33] C. Gill, F. Kuhns, D. C. Schmidt, and R. Cytron, “Empirical
Differences Between COTS Middleware Scheduling Paradigms,”
in Proceedings of the International Symposium on Distributed Objects
and Applications (DOA ’02), Irvine, CA, Oct. 2002.

Yuanfang Zhang received the B.S. and M.S.
degrees in Computer Science from Fudan Uni-
versity, China, in 1999 and 2002, respectively.
She received Ph.D. degree in Computer Science
from Washington University in St. Louis in 2008.
Her research interests include real-time middle-
ware, real-time systems and multicore platforms.
She is now with the Cloud Computing Future
team at Microsoft Research, Redmond.

Christopher D. Gill is an associate professor
of computer science and engineering in the De-
partment of Computer Science and Engineering,
Washington University in St. Louis. His research
interests include formal modeling, verification,
implementation, and empirical evaluation of poli-
cies and mechanisms for enforcing timing, con-
currency, footprint, fault tolerance, and security
properties in distributed, mobile, embedded, and
real-time systems. He developed the Kokyu real-
time scheduling and dispatching framework that

has been used in several AFRL and DARPA projects. He led the
development of the nORB small-footprint real-time object request broker
at Washington University in St. Louis. He has also led research projects
under which a number of real-time and fault-tolerant services for The
ACE ORB (TAO) and the Component Integrated ACE ORB (CIAO)
were developed. He has more than 50 refereed and invited technical
publications and has an extensive record of service in review panels,
standards bodies, workshops, and conferences for distributed real-time
and embedded computing. He is a member of the IEEE and the IEEE
Computer Society.

14

Chenyang Lu is an Associate Professor of Com-
puter Science and Engineering at Washington
University in St. Louis. He received the B.S. de-
gree from University of Science and Technology
of China in 1995, the M.S. degree from Chinese
Academy of Sciences in 1997, and the Ph.D.
degree from University of Virginia in 2001, all
in computer science. He is the author and co-
author of more than 80 publications, and re-
ceived an NSF CAREER Award in 2005 and a
Best Paper Award at International Conference

on Distributed Computing in Sensor Systems in 2006. Professor Lu
is an Associate Editor of ACM Transactions on Sensor Networks and
International Journal of Sensor Networks, and Guest Editor of the
Special Issue on Real-Time Wireless Sensor Networks of Real-Time
Systems. He also served as Program Chair and General Chair of IEEE
Real-Time and Embedded Technology and Applications Symposium in
2008 and 2009, Track Chair on Wireless Sensor Networks for IEEE
Real-Time Systems Symposium in 2007 and 2009, and Demo Chair
of ACM Conference on Embedded Networked Sensor Systems in 2005.
He serves on the executive committee of IEEE Technical Committee on
Real-Time Systems. His research interests include real-time embedded
systems, wireless sensor networks, and cyber-physical systems. He is
a member of ACM and IEEE.

