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All rights reserved. Except as permitted under the United States Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any
form or by any means without the prior written permission of the authors.

“If people do not believe that mathematics is simple, it is only because they do
not realize how complicated life is.” John von Neumann



Preface

Increasingly, engineering decisions are based on computed information with the
expectation that the computed information provides a reliable quantitative es-
timate of some attributes of a physical system or process. The question of how
much reliance on computed information can be justified is being asked with in-
creasing frequency and urgency. Assurance of the reliability of computed infor-
mation has two key aspects: (a) Selection of a suitable mathematical model and
(b) approximation of the solution of the corresponding mathematical problem.
The process by which it is ascertained that a mathematical model meets neces-
sary criteria for acceptance (i.e., it is not unsuitable for purposes of analysis) is
called validation. The process by which it is ascertained that the approximate
solution, as well as the data computed from the approximate solution, meet
necessary conditions for acceptance, given the goals of computation, is called
verification. This book addresses the problems of verification and validation.

Obtaining approximate solutions for linear models with guaranteed accu-
racy was one of the primary objectives of research in the period 1970-1985. An
important result was that exponential rates of convergence can be achieved by
the hp-version of the finite element method for a large and important class of
problems that includes problems of elasticity, heat conduction and similar prob-
lems. This made it feasible to estimate and control the errors of discretization
for many practical problems.

Since the mid-1980s the problems of proper model selection and control of
modeling errors came to the forefront of research. The concepts of hierarchic
models and modeling strategies have been developed. This subject is now suf-
ficiently mature to make practical applications in some very important areas
possible.

The distinguishing feature of this book is that it presents a systematic treat-
ment of verification procedures, illustrated by examples. We believe that users
of finite element analysis (FEA) software products must have a basic under-
standing of how mathematical models are constructed; what are the essential
assumptions incorporated in a mathematical model; what is the algorithmic
structure of the finite element method; how the discretization parameters affect
the accuracy of the finite element solution; how the accuracy of the computed
data can be assessed, and how to avoid common pitfalls and mistakes. Our
primary objective in assembling the material presented in this book is to pro-
vide a basic working knowledge of the finite element method. A commercial
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FEA software product called StressCheck1 is provided with the book to enable
readers to perform computational experiments. Another important objective of
this book is to prepare readers to follow and understand new developments in
the field of FEA through continued self-study.

Engineering students typically take only one course in finite element analysis,
consisting of approximately 15 weeks of instruction (45 lecture hours). We
organized the material in this book so as to make efficient use of the available
time. The book is written in such a way that the prerequisites are minimal.
Junior standing in engineering with some background in potential flow and
strength of materials are sufficient. For this reason the mathematical content is
focused on the introduction of the essential concepts and terminology necessary
for understanding applications of FEA in elasticity and heat conduction. Some
key theorems are proven in a simple setting.

We would like to thank Dr. Norman F. Knight, Jr. and Dr. Sebastian Nervi
for reviewing and commenting on the manuscript.

Barna Szabó Ivo Babuška
Washington University in St. Louis The University of Texas at Austin

1StressCheck is a trademark of Engineering Software Research and Development, Inc., St.
Louis, Missouri, USA.
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Chapter 1

Introduction

Engineering decision-making processes increasingly rely on information com-
puted from approximate solutions of mathematical models. Engineering deci-
sions have legal and ethical implications. The standard applied in legal proceed-
ings in civil cases in the United States is to have opinions, recommendations and
decisions be “based upon a reasonable degree of engineering certainty”. Codes of
ethics of engineering societies impose higher standards. For example the Code of
Ethics of the Institute of Electrical and Electronics Engineers (IEEE) requires
members “to accept responsibility in making engineering decisions consistent
with the safety, health, and welfare of the public, and to disclose promptly fac-
tors that might endanger the public or the environment” and “to be honest and
realistic in stating claims or estimates based on available data”.

An important challenge before the computational engineering community is
to establish procedures for creating evidence that will show, with a high degree
of certainty, that a mathematical model of some physical reality, formulated for
a particular purpose, can in fact represent the physical reality in question with
sufficient accuracy to make predictions based on mathematical models useful
and justifiable for the purposes of engineering decision-making and the errors
in the numerical approximation are sufficiently small. There is a large and
rapidly growing body of work on this subject. See, for example, [48], [37]. The
formulation and numerical treatment of mathematical models for use in support
of engineering decision-making in the field of solid mechanics is addressed in
a recently published document issued by the American Society of Mechanical
Engineers (ASME) and adopted by the American National Standards Institute
(ANSI) [26].

The considerations underlying the selection of mathematical models and
methods for estimation and control of modeling errors and the errors of dis-
cretization are the two main topics of this book. In this chapter a brief overview
is presented and the basic terminology is introduced.

1



2 CHAPTER 1. INTRODUCTION

1.1 Numerical simulation

The goal of numerical simulation is to make predictions concerning the response
of physical systems to various kinds of excitation and, based on those predic-
tions, make informed decisions. To achieve this goal, mathematical models are
defined and the corresponding numerical solutions are computed. Mathemati-
cal models should be understood to be idealized representations of reality and
should never be confused with the physical reality that they are supposed to
represent.

The choice of a mathematical model depends on its intended use: What
aspects of physical reality are of interest? What data must be predicted? What
accuracy is required? The main elements of numerical simulation and the asso-
ciated errors are indicated schematically in Fig. 1.1.

 Mathematical
      model

Physical
  reality Prediction

Conceptualization

   Numerical
     solution

    Errors of 
discretization

Discretization   Extraction

Decision

 Decision making

    Errors of 
  idealization

Figure 1.1: The main elements of numerical simulation and the associated errors.

Some errors are associated with the mathematical model and some errors are
associated with its numerical solution. These are called errors of idealization
and errors of discretization respectively. For predictions to be accurate both
kinds of errors have to be controlled. The errors of idealization are also called
modeling errors. Conceptualization is a process by which a mathematical model
is formulated. Discretization is a process by which the exact solution of the
mathematical model is approximated. Extraction is a process by which the data
of interest are computed from the approximate solution.

1.1.1 Conceptualization

Mathematical models are operators that transform one set of data, the input,
into another set, the output. In solid mechanics, for example, one is typically
interested in predicting displacements, strains stresses, stress intensity factors,
limit loads, natural frequencies, etc., given a description of the solution domain,
constitutive equations and boundary conditions (loading and constraints). Com-
mon to all models are the equations that represent the conservation of momen-
tum (in static problems the equations of equilibrium), the strain-displacement
relations and constitutive laws.

The end product of conceptualization is a mathematical model. Definition
of a mathematical model involves specification of the following:

1. Theoretical formulation. The applicable physical laws, together with cer-
tain simplifications, are stated as a mathematical problem in the form
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of ordinary or partial differential equations, or extremum principles. For
example, the classical differential equation for elastic beams is derived
from the assumptions of the theory of elasticity supplemented by the as-
sumption that the transverse variation of the longitudinal components of
the displacement vector can be approximated by a linear function with-
out significantly affecting the data of interest, typically the displacements,
bending moments, shear forces etc.

2. Specification of the input data. The input data are comprised of the
following:

(a) Data that characterize the solution domain. In engineering practice
solution domains are usually constructed by means of computer-aided
design (CAD) tools. CAD tools produce idealized representations of
real objects. The details of idealization depend on the choice of the
CAD tool and the training and preferences of its operator.

(b) Physical properties (elastic moduli, yield stress, coefficients of ther-
mal expansion, thermal conductivities, etc.)

(c) Boundary conditions (loads, constraints, prescribed temperatures,
etc.)

(d) Information or assumptions concerning the reference state and the
initial conditions

(e) Uncertainties. When some information needed in the formulation
of a mathematical model is unknown then the uncertainty is said
to be cognitive (also called epistemic). For example, the magnitude
and distribution of residual stresses is usually unknown, some phys-
ical properties may be unknown, etc. Statistical uncertainties (also
called aleatory uncertainties) are always present: Even when the av-
erage values of needed physical properties, loading and other data
are known, there are statistical variations, possibly very substantial
variations, in these data. Consideration of uncertainties is necessary
for proper interpretation of the computed information.

3. Statement of objectives. Definition of the data of interest and the corre-
sponding permissible error tolerances.

Conceptualization involves the application of expert knowledge, virtual ex-
perimentation and calibration.

Application of expert knowledge

Depending on the intended use of the model and the required accuracy of pre-
diction, various simplifying assumptions are introduced. For example, the as-
sumptions of the linear theory of elasticity, along with simplifying assumptions
concerning the domain and the boundary conditions, are widely used in me-
chanical and structural engineering applications. In many applications further
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simplifications are introduced, resulting in beam, plate, and shell models, pla-
nar models, axisymmetric models, each of which impose additional restrictions
on what boundary conditions can be specified and what data can be computed
from the solution.

In the engineering literature the commonly used simplified models are grouped
into separate model classes, called theories. For example, various beam, plate
and shell theories have been developed. The formulation of these theories typ-
ically involves a statement on the assumed mode of deformation (e.g., plane
sections remain plane and normal to the mid-surface of a deformed beam), the
relationship between the functions that characterize the deformation and the
strain tensor (e.g., the strain is proportional to the curvature and the distance
from the neutral axis), application of Hooke’s law, and statement of the equa-
tions equilibrium.

In undergraduate engineering curricula each model class is presented as a
thing in itself and consequently there is a strong predisposition in the engineering
community to view each model class as a separate entity. It is much more
useful however to view any mathematical model as a special case of a more
comprehensive model, rather than a member of a conventionally defined model
class. For example, the usual beam, plate and shell models are special cases of a
model based on the three-dimensional linear theory of elasticity, which in turn
is a special case of a large family of models based on the equations of continuum
mechanics that account for a variety of hyperelastic, elasto-plastic and other
material laws, large deformation, contact, etc. This is the hierarchic view of
mathematical models.

Given the rich variety of choices, model selection for particular applications
is a non-trivial problem. The goal of conceptualization is to identify the simplest
mathematical model that can provide predictions of the data of interest within
a specified range of accuracy.

Conceptualization begins with the formulation of a tentative mathematical
model based on expert knowledge. We will call this a working model. The term
has the same connotation and meaning as the term working hypothesis. Since
subjective judgment is involved, the formulation of the initial working model
may differ from expert to expert. Nevertheless, assuming that software tools
that allow systematic evaluation of mathematical models with respect to clearly
defined objectives are available, it should be possible for experts to arrive at a
close agreement on the definition of a mathematical model, given its intended
use.

Virtual experimentation

Model selection involves systematic evaluation of the effects of various modeling
assumptions on the data of interest and the sensitivity of the data of interest
to uncertainties in the input data. This is done through a process called virtual
experimentation.

For example, in solid mechanics one usually begins with a working model
based on the linear theory of elasticity. The implied assumptions are that the
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strain is much smaller than unity, the stress is proportional to the strain, the
displacements are so small that equilibrium equations written with respect to
the undeformed configuration hold in the deformed configuration also, and the
boundary conditions are independent of the displacement function. Once a ver-
ified solution is available, it is possible to examine the stress field and determine
whether the stress exceeded the proportional limit of the material and whether
this affects the data of interest significantly. Similarly, the effects of large de-
formation on the data of interest can be evaluated. Furthermore, it is possible
to test the sensitivity of the data of interest to changes in boundary condi-
tions. Virtual experimentation provides valuable information on the influence
of various modeling assumptions on the data of interest.

Calibration

In the process of conceptualization there may be indications that the data of
interest are sensitive functions to certain parameters that characterize material
behavior or boundary conditions. If those parameters are not available then
calibration experiments must be performed for the purpose of determining the
needed parameters. In calibration the mathematical model is assumed to be
correct and the parameters that characterize the model are selected such that
the measured response matches the predicted response.

Example 1.1.1 If the goal of computation is to predict the number of load
cycles that cause fatigue failure in a metal part then one or more empirical
models must be chosen that require as input stress or strain amplitudes and
material parameters. One of the widely used models for the prediction of fatigue
life in low cycle fatigue is the general strain-life model:

ǫa =
σ̄f

E
(2N)b + ǭf (2N)c (1.1)

where ǫa is the strain amplitude, N is the number of cycles to failure, E is
the modulus of elasticity, σ̄f is the fatigue strength coefficient, b is the fatigue
strength exponent, ǭf is the fatigue ductility coefficient and c is the fatigue
ductility exponent. The parameters E, σ̄f , b, ǭf and c are determined through
calibration experiments. See, for example, [54]. Several variants of this model
are in use. Standard procedures have been established for calibration experi-
ments for metal fatigue1.

1.1.2 Validation

Validation is a process by which the predictive capabilities of mathematical
models are tested and improved. We will be concerned primarily with problems
in solid mechanics for which the predictions can be tested through experiments
especially designed for that purpose. This is a very large class of problems that

1See, for example, International Organization for Standardization ISO 12106:2003 and ISO
12107:2003.
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includes all mathematical models designed for the prediction of the performance
of mass-produced items. There are other important problems, such as the effects
of earthquakes and other natural disasters, unique design problems, such as
dams, siting of nuclear power stations and the like for which the predictions
based on mathematical models cannot be tested. In such cases the models are
analyzed a posteriori and improved in the light of new information collected
following an incident.

Associated with each mathematical model is a modeling error (illustrated
schematically in Fig. 1.1). Therefore it is necessary to have a process for test-
ing the predictive capabilities of mathematical models. This process, called
validation. is illustrated schematically in Fig. 1.2.

 Mathematical
      model

Physical
  reality

   Criteria 
      met?   

No

Prediction

Pass
Yes

Compare prediction
   with experiment

Numerical solution
   and verification

Fail

Conceptualization

Figure 1.2: Validation.

For a validation experiment one or more metrics and the corresponding cri-
teria are defined. If the predictions meet the criteria then the model is said to
have passed the validation test, otherwise the model is rejected.

In large projects, such as the development of an aircraft, a series of valida-
tion experiments are performed starting with coupon tests for the determination
of physical properties and failure criteria, then progressing to sub-components,
components, parts, sub-assemblies and finally the entire assembly. Of course,
the cost of experiments increases with complexity and hence the number of
experiments decreases with complexity. The goal is to develop sufficiently re-
liable predictive capabilities such that the outcome of experiments involving
sub-assemblies and assemblies will confirm the predictions. Finding problems
late in the production cycle is generally very costly.

In evaluating the results of validation experiments it is important to bear in
mind the limitations and uncertainties associated with the available information
concerning physical systems being modeled:

1. The solution domain is usually assumed to correspond to design specifi-
cations (‘the blueprint’). In reality, parts, sub-assemblies and assemblies
deviate from their specifications and the degree of deviation may not be
known, or would be difficult to incorporate into a mathematical model.

2. For many materials the constitutive laws are known imperfectly and only
in some average sense and within a narrow range of strain, strain rate,
temperature and over a short time interval of loading.
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3. The boundary conditions, other than stress-free boundary conditions, are
not known with a high degree of precision, even under carefully controlled
experimental conditions. The reason for this is that the loading and con-
straints typically involve mechanical contact which depends on the compli-
ances of the structures that impose the load and constraints (e.g., testing
machine, milling machine, assembly rig, etc.) and the physical properties
of the contacting surfaces. In other words, the boundary conditions rep-
resent the influence of the environment on the mathematical model. The
needed information is rarely available. Therefore subjective judgment of
the analyst in the formulation of boundary conditions is usually unavoid-
able.

4. Due to the history of the material prior to manufacturing the parts that
will be assembled into a machine or structure, such as casting, quenching,
extrusion, rolling, forging, heat treatment, cold forming and machining,
initial stresses exist, the magnitude of which can be very substantial. The
initial stress state must satisfy the equations of equilibrium and the stress-
free boundary conditions but otherwise it is generally unknown.

5. Information concerning the probability distribution of the data that char-
acterize the problem and their covariance functions is rarely available. In
general, uncertainties increase with the complexity of models.

Remark 1.1.1 More than one mathematical model may have been proposed
with identical objectives and it is possible that more than one mathematical
model will meet the validation criteria. In that case the simpler model is pre-
ferred.

Remark 1.1.2 Owing to statistical variability in the data and errors in exper-
imental observations comparisons between prediction based on a mathematical
model and the outcome of physical experiments must be understood in a statis-
tical sense. The theoretical framework for model selection is based on Bayesian
analysis2. Specifically, denoting a mathematical model by M , the newly ac-
quired data by D and the background information by I, the probability that
the model M is a sufficiently good predictor of the dataD, given the background
information I, can be written in terms of conditional probabilities:

Prob(M |D, I) ≈ Prob(D|M, I) × Prob(M |I). (1.2)

In other words, Bayes’ theorem relates the probability that a mathematical
model is correct, given the measured data D and the background information
I, to the probability that the measured data would have been observed if the
model were functioning properly. See, for example, [52]. The term Prob(M |I)
is called prior probability. It represents expert opinion about the validity of M
prior to coming into possession of some new data D. The term Prob(D|M, I)
is called the likelihood function. In this view competing mathematical models

2Thomas Bayes (c. 1702 - 1761).
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are assigned probabilities that represent the degree of belief in the reliability of
each of the competing models, given the information available prior to acquiring
additional information. In the light of the new information, obtained by experi-
ments, the prior probability is updated to obtain the term Prob(M |D, I), called
the posterior probability. An important and highly relevant aspect of Bayes’
theorem is that it establishes a framework for improvement of the probability
estimate Prob(M |D, I) based on new data.

1.1.3 Discretization

The finite element method (FEM) is one of the most powerful and widely used
numerical methods for finding approximate solutions to mathematical problems
formulated so as to simulate the responses of physical systems to various forms
of excitation. It is used in various branches of engineering and science, such
as elasticity, heat transfer, fluid dynamics, electromagnetism, acoustics, biome-
chanics, etc.

In the finite element method the solution domain is subdivided into elements
of simple geometrical shape, such as triangles, squares, tetrahedra, hexahedra,
and a set of basis functions are constructed such that each basis function is
non-zero over a small number of elements only. This is called discretization.
Details will be given in the following chapters. The set of all functions that
can be written as linear combinations of the basis functions is called the finite
element space. The accuracy of the data of interest depends on the finite element
space and the method used for computing the data from the finite element
solution. Associated with the finite element solution are errors of discretization,
as indicated in Fig. 1.1.

It is necessary to create finite element spaces such that the data of interest
computed from the finite element solution are within acceptable error bounds
with respect to their counterparts corresponding to the exact solution of the
mathematical model.

The data of interest, such as the maximum displacement, temperature,
stress, etc. are computed from the finite element solution uFE . The data of
interest will be denoted by Φi(uFE), i = 1, ..., n in the following. The objec-
tive is to compute Φi(uFE) and to ensure that the relative errors are within
prescribed tolerances:

|Φi(uEX) − Φi(uFE)|
|Φi(uEX)| ≤ τi (1.3)

where uEX is the exact solution. Of course uEX is not known in general,
however it is known that Φi(uEX) is independent of the finite element space.
The error in Φi(uFE) depends on the finite element space and the method used
for computing Φi(uFE). The errors of discretization are controlled through
suitable enlargement of the finite element spaces, and by various procedures
used for computing Φi(uFE).
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1.1.4 Verification

Verification is concerned with verifying that (a) the input data are correct, (b)
the computer code is functioning properly and (c) the errors in the data of
interest meet necessary conditions to be within permissible tolerances.

Common errors in input are incorrectly entered data, such as mixed units
and errors in data entry. Such errors are easily caught in a careful review of the
input data.

The primary responsibility for ensuring that the code is functioning properly
rests with the code developers. However, computer codes tend to have program-
ming errors, especially in their less frequently traversed branches, and the user
shares in the responsibility of verifying that the code is functioning properly.

In verification accuracy is understood to be with respect to the exact solution
of the mathematical model, not with respect to physical reality. The process
of verification of the numerical solution is illustrated schematically in Fig. 1.3.
The term extraction refers to methods used for computing Φi(uFE). Details are
presented in the following chapters.

 Mathematical
      model

Numerical
  solution

Prediction

 Extraction and
error estimation

     Errors   
 acceptable?

YesNo

Discretization

Figure 1.3: Verification of the numerical solution.

Remark 1.1.3 Verification and validation are possible only when the mathe-
matical model is properly formulated with respect to the goals of computation.
For example, in linear elasticity the solution domain must not have sharp re-
entrant corners or edges if the goal of computation is to determine the maximum
stress, point constraints and point force can be used only when certain crite-
ria are met, etc. Details are given in the following chapters. Unfortunately,
using mathematical models without regard to their limitations is a commonly
occurring conceptual error.

Remark 1.1.4 The process illustrated schematically in Fig. 1.1 is often referred
to as ‘finite element modeling’. This term is unfortunate because it mixes two
conceptually different aspects of numerical simulation; the definition of a math-
ematical model and its numerical solution by the finite element method.
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1.1.5 Decision making

As noted at the beginning of Section 1.1, the goal of numerical simulation is
to support various engineering decision-making processes. There is an implied
expectation of reliability: One could not reasonably base decisions on computed
information without believing that the information is sufficiently reliable to sup-
port those decisions. Demonstration of the reliability of mathematical models
used in support of engineering decision-making is an essential part of any mod-
eling effort. In fact, the role of physical testing is to calibrate and validate
mathematical models so that a variety of load cases and design alternatives can
be evaluated.

In the following we illustrate the importance of the reliability of numerical
simulation processes through brief descriptions of four well-documented exam-
ples of the consequences of large errors in prediction either because deficient
mathematical models were used or because large errors occurred in the numeri-
cal solution. Additional examples can be found in [41], [42]. Undoubtedly, there
are many undocumented instances of substantial loss attributable to errors in
predictions based on mathematical models.

Example 1.1.2 The Tacoma Narrows Bridge, the first suspension bridge across
Puget Sound (Washington State, USA) collapsed on November 7, 1940, four
months after its opening. Wind blowing at 68 km/h caused sufficiently large
oscillations in the 853 m main span to collapse the span.

Until that time bridges were designed on the basis of equivalent static forces.
The possibility that relatively small periodic aerodynamic forces (the effects of
Kármán vortices3) may become significant was not considered. The Kármán
vortices were first analyzed in 1911 and the results were presented in the Göttin-
gen Academy in the same year4. The designers were either unaware of those
results or did not see their relevance to the Tacoma Narrows Bridge, the fail-
ure of which was caused by insufficient torsional stiffness to resist the periodic
excitation induced by Kármán vortices.

Example 1.1.3 The roof of the Hartford Civic Center Arena collapsed on Jan-
uary 18, 1978. The roof structure, measuring 91.4 by 109.7 m (300 by 360 ft),
was a space frame, an innovative design at that time. It was analyzed using a
mathematical model that accounted for linear response only. Furthermore, the
connection details were greatly simplified. In linear elastostatic analysis it is
assumed that the deformation of a structure is negligibly small and hence it is
sufficient to satisfy the equations of equilibrium in the undeformed configura-
tion.

The roof frame was assembled on the ground. Once the roof was lifted into
its final position, its deflection was measured to be twice of what was predicted
by the mathematical model.

3Theodore von Kármán 1881-1963.
4Th. von Kármán and L. Edson, The Wind and Beyond. Theodore von Kármán Pioneer

in Aviation and Pathfinder in Space, Little, Brown & Co., Boston, pp. 211-215, (1967).
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“When notified of this condition, the engineers expressed no concern,
explaining that such discrepancies had to be expected in view of the
simplifying assumptions of the theoretical calculation”5.

Subsequent investigation identified that reliance on an oversimplified model that
did not represent the connection details properly and failed to account for geo-
metric nonlinearities was the primary cause of failure.

Example 1.1.4 The Vaiont dam, one of the highest dams in the world (262
m) was completed in the Dolomite Region of the Italian Alps, 100 km North
of Venice, in 1961. On October 9, 1963, after heavy rains, a massive landslide
into the reservoir caused a large wave that over-topped the dam by up to 245
m and swept onto the valley below, resulting in the loss of an estimated 2000
lives6. The courts found that, owing to the predictability of the landslide, three
engineers were criminally responsible for the disaster. The dam withstood the
overload caused by the wave. This incident serves as an example of a full scale
test of a major structure caused by an unexpected event.

Example 1.1.5 The consequences of large errors of discretization are exempli-
fied by the Sleipner accident. The gravity base structure (GBS) of the Sleipner
A offshore platform, made of reinforced concrete, sank during ballast test oper-
ations in Gandsfjorden, South of Stavenger, Norway on August 23, 1991. The
economic loss was estimated to be 700 million dollars.

The main function of the GBS was to support a platform weighing 56,000
tons. The GBS consisted of 24 caisson cells with a base area of 16,000 m2. Four
cells were elongated to form shafts designed to support the platform. The total
concrete volume of the GBS was 75,000 m3. The accident occurred as the GBS
was being lowered to a depth of approximately 99 m. Failure first occurred in
two triangular cells, called tri-cells, next to one of the shafts. When the GBS
hit the sea bed, seismic events measuring 3 on the Richter scale were recorded
in the Stavenger area7.

There is general agreement among the investigators that the accident was
caused by large errors in the finite element analysis, the goal of which was to
estimate the requirements for reinforcement of the concrete cells by steel bars:

“The global finite element analysis gave a 47% underestimation of
the shear forces in the tri-cell walls. This error was caused by the
use of a coarse finite element mesh with some skewed elements used
for analysis of the tri-cell walls”8.

5Levy, M. and Salvadori, M., Why Buildings Fall Down: How Structures Fail, W. W.
Norton, New York, NY. (2002).

6See, for example, Hendron, A. J., and Patten, F. D. The Vaiont Slide. US Corps of
Engineers Technical Report GL-85-8 (1985).

7Jacobsen, B., ”The Loss of the Sleipner A Platform”, Proc. 2nd International Offshore

and Polar Engineering Conference, International Society of Offshore and Polar Engineers,
ISBN 1-880653-01-X, Vol. 1, 1992.

8Rettedal, W. K., Gudmestad, O. T., and T. Aarum, “Design of Concrete Platforms after
Sleipner A-1 Sinking”, Proc. 12th International Conference on Offshore Mechanics and Arctic
Engineering, Vol. 1, Offshore Technology, pp. 309-310, ASME 1993.
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“A check of the global response analysis revealed serious inaccuracies
in the interpretation of results from finite element analyses giving
a shear force in a critical section of the cell wall that was less than
60% of the correct value”9.

1.2 Why is numerical accuracy important?

A number of difficulties associated with accurate representation of a real phys-
ical system by mathematical means were noted in Section 1.1.2. Given these
difficulties, it may seem reasonable to ask: “If we do not know the input data
with sufficient accuracy, then why should we be concerned with the accuracy of
the numerical solution?” In answering this question we consider two important
areas of application of mathematical models: The application of design rules
and the formulation of design rules. It is shown in the following that both the
application and the formulation of design rules require estimation and control
of the numerical accuracy.

1.2.1 Application of design rules

Design and design certification involve application of existing design rules, es-
tablished by various codes and conventions. The design rules are typically stated
in the form of required minimum factors of safety:

FS :=
Φlim

Φmax(uEX)
≥ (FS)design (1.4)

where FS is the realized factor of safety Φlim > 0 is the limiting (not to exceed)
value of some entity (such as maximum bending moment, maximum stress, etc.)
Φmax(uEX) > 0 is the exact value of the same entity corresponding to the exact
solution of the mathematical model and (FS)design is the minimum value of
the factor of safety specified by the applicable design rules. It is the designer’s
responsibility to ensure that the applicable design rules are followed.

We will denote by Φmax(uFE) the value of Φmax computed from the finite
element solution. Let us suppose that, owing to numerical errors, it is possible
to guarantee only that the relative error is not greater than τ :

|Φmax(uEX) − Φmax(uFE)|
Φmax(uEX)

≤ τ 0 ≤ τ < 1

in other words, Φmax(uFE) may underestimate Φmax(uEX) by 100τ percent.
Therefore we have:

Φmax(uEX) ≤ 1

(1 − τ)
Φmax(uFE)

9Holand, I., “The Sleipner Accident” in From Finite Elements to the Troll Platform - Ivar

Holand 70th Anniversary, K. Bell, editor, ISBN 82-7482-016-9, Department of Structural
Engineering, The Norwegian Institute of Technology, Trondheim, Norway, pp. 157-168, 1994.



1.2. WHY IS NUMERICAL ACCURACY IMPORTANT? 13

on substituting this expression into eq. (1.4), we have:

Φlim

Φmax(uFE)
≥ (FS)design

1 − τ
· (1.5)

On comparing eq. (1.5) with eq. (1.4) it is seen that to compensate for numerical
errors in the computation of Φmax(uFE), it is necessary to increase the required
factor of safety to (FS)design/(1−τ). For example, if the accuracy of Φmax(uFE)
can be guaranteed to 20% (i.e., τ = 0.20) then (FS)design must be increased by
25%. Since (FS)design was chosen conservatively to account for the uncertain-
ties, the economic penalties associated with using an increased factor of safety
generally far outweigh the costs associated with guaranteeing the accuracy of
the data of interest to within a small relative error (say 5%).

It is necessary to specify the acceptable error tolerance in finite element
analysis and to verify that the error is not larger than the specified tolerance.

Remark 1.2.1 In aerospace engineering the design requirements are stated in
terms of minimum acceptable margins of safety (MS). By definition: MS =
FS − 1.

Remark 1.2.2 Economic considerations dictate that the realized factor of safety
should not be much larger than (FS)design. This is especially true in aerospace
engineering where avoidance of weight penalties dictate upper bounds on the
realized factors of safety.

Example 1.2.1 The yield strength in shear of hot rolled 0.2% carbon steel is
165 MPa and the usual factor of safety for static loads is 1.65 (so that the allow-
able maximum shear stress is 100 MPa)10. If the numerical computations could
underestimate the maximum shear stress by as much as 20% then the factor of
safety would have to be increased to 2.06, that is, the allowable maximum value
would be reduced to 80 MPa.

1.2.2 Formulation of design rules

Formulation of design rules involves definition of certain entities Φk (k = 1, 2, . . . ),
such as the maximum principal stress, some specific combinations of stress and
strain components, etc. that characterize failure and the corresponding limiting
values. In the following the subscript k will be dropped and the discussion will
be concerned with a generic design rule, that is, the determination of Φlim and
evaluation of the associated uncertainties. The factor of safety is determined on
the basis of assessment of uncertainties and consideration of the consequences
of failure.

Suppose that a hypothesis stating that failure occurs when Φ reaches its
critical value Φlim was proposed. First a set of calibration experiments have
to be performed with the objective to determine Φlim. Second, another set

10See, for example, E. P. Popov, Engineering Mechanics of Solids, 2nd. edition, Prentice
Hall, Upper Saddle River, NJ., 1998.
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of experiments have to be conducted to test whether failure can be predicted
on the basis of Φlim. These are validation experiments. In general Φ cannot
be observed directly, therefore it must be inferred from correlations between
computed data and experimental observations.

Let Yij be the ith ideal observation of the jth experiment and let φi(u
(j)
EX)

be the corresponding functional11 computed from the exact solution u
(j)
EX so

that if there were no experimental errors and the mathematical model and the
hypothesis were both correct then we would have

Yij − φi(u
(j)
EX) = 0.

Due to experimental errors we actually observe yij and compare it with φi(u
(j)
FE),

the finite element approximation to φi(u
(j)
EX). Let us write

Yij = yij ± eexp
ij

and

φi(u
(j)
EX) = φi(u

(j)
FE) ± efeaij

where eexp
ij (resp. efeaij ) is the experimental (resp. approximation) error. Then:

yij − φi(u
(j)
FE) = Yij ∓ eexp

ij − φi(u
(j)
EX) ± efeaij .

Using the triangle inequality, we have

|yij − φi(u
(j)
FE)|

︸ ︷︷ ︸

apparent error

≤ |Yij − φi(u
(j)
EX)|

︸ ︷︷ ︸

true error

+|eexp
ij | + |efeaij |. (1.6)

This result shows that in testing a particular hypothesis it is essential to have
both the experimental errors and the errors of discretization under control,
otherwise it will not be possible to know whether the apparent error is due to
an error in the hypothesis, errors in the numerical approximation, or errors in
the experiment. Furthermore, means for estimation and control of discretization
errors, in terms of the data of interest, must be provided by the computer code.

The aim of experiments needs to include the development of reliable statis-
tical information on the basis of which the factor of safety is established.

1.3 Chapter summary

The principal aim of this book is to present the theoretical and practical con-
siderations relevant to (a) the validation of mathematical models and (b) ver-
ification of the data of interest computed from finite element solutions. Some
fundamental concepts and basic terminology were introduced:

11A functional is a real number defined on a space of functions. In the present context a
functional is a real number computed from the exact solution or the finite element solution.
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Mathematical model

A mathematical representation of a physical system or process intended for
predicting some set of responses is called a mathematical model. Mathematical
models transform one set of data, the input, into an other set, the output.

Conceptualization

Conceptualization is a process by which a mathematical model is defined, for
a particular application. Conceptualization involves (a) application of expert
knowledge, (b) virtual experimentation and (c) calibration.

Discretization

Discretization is a process by which a mathematical problem is formulated that
can be solved on digital computers, the solution of which approximates the exact
solution of a given mathematical model

Validation

Validation is a process by which the predictive capabilities of mathematical
models are tested and improved. Ideally, experiments are performed especially
to test whether a mathematical model meets necessary conditions for acceptance
from the perspective of its intended use. Validation experiments are evaluated
on the basis of one or more metrics and the corresponding criteria. In any
important applications of mathematical models the predictions cannot be tested
in validation experiments. In such cases the model is analyzed a posteriori in
the light of new information collected following an incident.

Verification

Verification is a process by which it is ascertained that the data of interest com-
puted from the approximate solution meet necessary conditions for acceptance.
Verification is understood in relation to the exact solution of a mathematical
model, not in relation to the physical reality that the mathematical model is
supposed to represent.

Errors

Five types of error were discussed: Errors of idealization, errors of discretization,
conceptual errors, programming errors and errors in the input data.
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Chapter 2

An outline of FEM

In this chapter an outline of the finite element method is presented in one-
dimensional setting. It will be generalized to two and three dimensions in sub-
sequent chapters.

Throughout the book the units of physical data will be identified in terms
of the standard SI1 notation. Any consistent set of units may be used, however.

2.1 Mathematical models in one dimension

The formulation of mathematical models will be discussed in Chapter 3. Here a
simple mathematical model that will serve as the basis for the discussion of the
conceptual and algorithmic aspects of the finite element method is formulated.

2.1.1 The elastic bar

The elastostatic response of an elastic bar to imposed loads is characterized
by the axial displacement function u(x). We will assume that the centroidal
axis of the bar is coincident with the x-axis. The length of the bar is ℓ. The
mathematical model of an elastic bar is based on equations that represent the
strain-displacement relationship, the stress-strain relationship and equilibrium:

1. The strain-displacement relationship. The total strain is

ǫx ≡ ǫ =
du

dx
≡ u′. (2.1)

The total strain ǫ is the sum of the mechanical strain ǫm and the thermal
strain ǫt = αT∆ where α = α(x) ≥ 0 is the coefficient of thermal expansion
(1/K units). Therefore the mechanical strain is:

ǫm = ǫ− ǫt = u′ − αT∆. (2.2)

1Système International d’Unités (International System of Units).
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2. The stress-strain relationship. In one dimension Hooke’s law states
that the stress is proportional to the mechanical strain:

σx ≡ σ = Eǫm = E(u′ − αT∆) (2.3)

where E = E(x) > 0 is the modulus of elasticity (MPa units).

3. Equilibrium. It is assumed that the stress is constant over the cross-
sectional area. The equilibrium equations are written in terms of the bar
force Fb defined by

Fb :=

∫

A

σ dydz = σA = AE(u′ − αT∆) (2.4)

where A = A(x) > 0 is the area of the cross section. The bar may be
subjected to traction forces and/or volume forces Tb in N/m units and
tractions exerted by elastic springs:

Ts := c(d− u) (2.5)

where d = d(x) is displacement imposed on the distributed spring and
c = c(x) ≥ 0 is the spring rate in N/m2 units. When the force Tb accounts
for volume forces then it is understood that the volume forces have been
integrated over the cross-sectional area, such that Tb is measured in N/m
units.

Figure 2.1: Bar element.

Referring to Fig. 2.1, and considering the equilibrium of an isolated part
of the bar of length ∆x, we write:

∆Fb + Tb∆x+ Ts∆x = 0

Assuming that Fb is a continuous and differentiable function,

∆Fb =
dFb

dx
∆x+O(∆x).

Letting ∆x→ 0, we have the equilibrium equation:

dFb

dx
+ Tb + Ts = 0. (2.6)
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On combining equations (2.4), (2.5) and (2.6) the ordinary differential equation
that models the mechanical response of elastic bars to applied traction forces is
obtained:

− d

dx

(

AE
du

dx

)

+ cu = Tb + cd− d

dx
(AEαT∆) on x ∈ I (2.7)

where I represents the set of points x that lie in the interval 0 < x < ℓ. In the
following we will write I = (0, ℓ).

Boundary conditions

We will be considering linear boundary conditions associated with eq. (2.7).
These are shown schematically in Fig. 2.2. A brief description follows.

Figure 2.2: Elastic bar. Linear boundary conditions.

1. Displacement boundary conditions, also called kinematic boundary condi-
tions, are shown in Fig. 2.2(a). The given displacement is denoted by û0

at x = 0 (resp. ûℓ at x = ℓ).

2. Forces, denoted by F0 and Fℓ, as indicated in Fig. 2.2(b), may be pre-
scribed at one or both boundary points. The applied forces are positive
when tensile:

F0 := [AE(u′ − αT∆)]x=0 Fℓ := [AE(u′ − αT∆)]x=ℓ. (2.8)

3. Spring boundary conditions are linear relationships between the bar forces
F0 and Fℓ and the corresponding displacements at the boundary points,
as indicated in Fig. 2.2(c):

F0 =[AE(u′ − αT∆)]x=0 = k0(u(0) − d0) (2.9)

Fℓ =[AE(u′ − αT∆)]x=ℓ = kℓ(dℓ − u(ℓ)) (2.10)
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where k0 ≥ 0 (resp. kℓ ≥ 0) is the spring constant (in N/m units) at x = 0
(resp. x = ℓ) and d0 (resp. dℓ) is a displacement imposed on the spring at
x = 0 (resp. x = ℓ).

Of course, the displacement, force and spring boundary conditions may occur
in any combination.

Symmetry, antisymmetry and periodicity

The axis of symmetry is a line that passes through mid-point of the interval
ℓ and is perpendicular to the x-axis. A scalar function defined on I is said
to be symmetric if in symmetrically located points with respect to the axis
of symmetry the function has equal values. A scalar function is said to be
antisymmetric if in symmetrically located points with respect to the axis of
symmetry the function has equal absolute values but opposite sign.

The coefficients AE(x) and c(x) may be symmetric functions with respect
to the axis of symmetry. If in such cases Tb(x), d(x), αT∆(x) and the bound-
ary conditions are also symmetric (resp. antisymmetric) then the solution is a
symmetric (resp. antisymmetric) function with respect to the axis of symmetry.
When the solution is a symmetric or antisymmetric function then the problem
can be solved on half of the interval and extended to the entire interval by
symmetry or antisymmetry.

We will understand symmetry to mean mirror image symmetry with respect
to the axis of symmetry. In the case of the elastic bar the displacement, bar
force and traction are vector functions. These vector functions have only one
non-zero component which is perpendicular to the axis of symmetry. Examples
of symmetric and antisymmetric loading and constraints are shown in Figures
2.3(a) and 2.3(b). In the symmetric case the boundary condition is u(ℓ/2) = 0.
In the antisymmetric case the boundary condition is F (ℓ/2) = 0.

When AE(x), c(x), Tb(x), d(x) and αT∆(x) are periodic functions, the length
of the period being ℓ, that is, (AE)x=0 = (AE)x=ℓ, c(0) = c(ℓ), Tb(0) = Tb(ℓ),
d(0) = d(ℓ), αT∆(0) = αT∆(ℓ), u(0) = u(ℓ) and F (0) = F (ℓ) then the solution
is a periodic function and the boundary conditions are said to be periodic. The
solution obtained for (0, ℓ) is extended to −∞ < x < ∞. Periodic boundary
conditions are illustrated in Fig. 2.3(c).

Remark 2.1.1 The mathematical problem of eq. (2.7), together with specific
boundary conditions, is a mathematical model of an elastic bar. This problem
is solved with the goal to obtain some desired information, called data of in-
terest, such as the displacement u(x), the axial strain u′(x), or the axial force
AE(u′(x) − αT∆) in all or specific points, or in points where their maxima oc-
curs. Incorporated in the model are the assumptions that |ǫm| << 1, |ǫt| << 1
and |σ| ≤ σpl where σpl is the proportional limit of the material.

Example 2.1.1 Consider the problem

−(AEu′)′ + cu = Tb, u(0) = 0, Fb(ℓ) = Fℓ
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Figure 2.3: Elastic bar. Symmetric, antisymmetric and periodic loading and
boundary conditions.

where AE and c are constants and Tb = b0 + b1x/ℓ, where b0, b1 are given
constants (in N/mm units). To solve this problem we define λ2 := c/(AE).
The general solution can be found in standard texts on ordinary differential
equations and engineering mathematics:

u = C1 coshλx + C2 sinhλx+
b0
c

+
b1
c

x

ℓ
· (2.11)

From the boundary conditions we find:

C1 = − b0
c

C2 =
1

λ coshλℓ

[
Fℓ

AE
+
b0
c
λ sinhλℓ − b1

cℓ

]

.

Example 2.1.2 Consider the problem of Example 2.1.1 with periodic boundary
conditions:

−(AEu′)′ + cu = Tb, u(0) = u(ℓ), Fb(0) = Fb(ℓ)

where, as in Example 2.1.1, AE and c are constants and Tb = b0 + b1x/ℓ, with
b0, b1 are given constants. The general solution is given by (2.11). On applying
the periodic boundary conditions we find:

u =
b1
2c

coshλx+
b1
2c

sinhλℓ

1 − coshλℓ
sinhλx +

b0
c

+
b1
c

x

ℓ
· (2.12)
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Exercise 2.1.1 Consider an elastic bar constrained by a distributed spring
of stiffness c. Assume that AE, c are constants. The coefficient of thermal
expansion is α (constant). The boundary conditions are: u(0) = 0, Fb(ℓ) = 0.
The bar is subjected to a temperature change T∆(x) = b0 (constant). Write
down the solution for this problem.

Exercise 2.1.2 Consider an elastic bar constrained by a distributed spring of
stiffness c. Assume that AE, c are constants and u(0) = û0, Fb(ℓ) = kℓ(dℓ −
u(ℓ)). Write down the solution for this problem.

2.1.2 Conceptualization

We have formulated mathematical models suitable for predicting static re-
sponses of elastic bars. We tacitly assumed that the physical properties and
boundary conditions were given. In many practical applications not all of the
needed information is available. Therefore it is necessary to perform and in-
terpret calibration experiments. The procedure is illustrated by the following
example.

Example 2.1.3 One of the methods used for ensuring that the foundation of
a large building is sufficiently stiff to resist the dead and live loads without
undergoing excessive settlement is to drive large elastic bars, called piles, into
the soil. Suppose that two experts were consulted on the question of how to
estimate the stiffness of a pile and both experts agreed that the mathematical
model should be based on the following differential equation:

−AEu′′ + cu = 0, AEu′(0) = F0, u
′(ℓ) = 0 (2.13)

where c represents the action of the soil on the pile. The goal is to predict the
displacement u0 at the top of the pile as a function of the applied axial force.
The notation is shown in Fig. 2.4.

Both experts recommended using the nominal value for the modulus of elas-
ticity of steel E = 200 GPa however one expert recommended that c should be
treated as a constant, the other expert recommended that c = kx where k is
a constant should be assumed. In other words, different mathematical models
were proposed for the same problem. In the following we refer to these as Model
A and Model B, respectively. In order to determine c, an HP305×110 test pile2

was driven into the soil to the depth of 12.0 m. The cross-sectional area is
1.402× 10−2 m2.

A pull test yielded the following results: When the applied force F0 is 200
kN then the measured upward displacement u0 is 9.0 mm; at F0 = 300 kN
u0 = 13.5 mm; at F0 = 400 kN u0 = 18.0 mm. In other words, the experimental
measurements yielded F0/u0 = 22.22 kN/mm.

2This designation indicates that the cross-section is H-shaped, the nominal depth of the
cross-section is 305 mm and the mass is approximately 110 kg/m.
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Figure 2.4: Example 2.1.3. Notation.

Calibration of Model A

Equation (2.13) can be re-written as

−u′′ + λ2u = 0, u′(0) = F0/AE, u
′(ℓ) = 0 where λ :=

√
c

AE
(2.14)

the solution of which is:

u(x) =
F0

λAE

(

sinhλx − coshλℓ

sinhλℓ
coshλx

)

.

Note that with the sign convention adopted in Section 3.4.4 and illustrated in
Fig. 2.2, the upward displacement is negative, that is u(0) = −u0. Therefore
the force-displacement relationship is

F0 = AEu′(0) = AE
λ sinhλℓ

coshλℓ
u0 (2.15)

which can be written as

G(λ) :=
F0

u0
−AE

λ sinhλℓ

coshλℓ
= 0. (2.16)

For the three data pairs F0/u0 = 22.22 kN/mm was measured. We need to find λ
such that G(λ) = 0. Various root finding methods are available. One of the most
commonly used methods is the Newton-Raphson method3. In this method we

3Sir Isaac Newton 1642-1727, Joseph Raphson 1648-1715.
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select a trial value for λ, denoted by λ1, and compute the corresponding G(λ1)
andG′(λ1) := (dG/dλ)λ=λ1 . The choice of λ1 must be such that (dG/dλ)λ=λ1 6=
0. We then compute λk+1 from

λk+1 = λk − G(λk)

G′(λk)
for k = 2, 3, . . .

and continue the process until λk+1 − λk is sufficiently small. By this method
we find λ = 2.6112× 10−2 m−1 and from the definition of λ given in eq. (2.14)
we have c = 1912 kN/m2. This completes the calibration step for Model A.

Calibration of Model B

Calibration of Model B involves solution of the problem

−AEu′′ + kxu = 0, AEu′(0) = F0, u
′(ℓ) = 0 (2.17)

which will be written as

−u′′ + λ2xu = 0, u′(0) = F0/AE, u
′(ℓ) = 0 where λ :=

√

k

AE
· (2.18)

This is known as the Airy equation4, see for example [44]. We will use a Taylor
series expansion to find an approximate solution. We denote the nth derivative
of u by Dnu. The derivatives for n = 0, 1, . . . , 7 are shown in Table 2.1.

Table 2.1: The derivatives of u(x).

n Dnu(x) Dnu(0)
0 u −u0

1 Du F0/AE
2 λ2xu 0
3 λ2u+ λ2xDu −λ2u0

4 2λ2Du+ λ2xD2u 2λ2F0/AE
5 3λ2D2u+ λ2xD3u 0
6 4λ2D3u+ λ2xD4u −4λ4u0

7 5λ2D4u+ λ2xD5u 10λ4F0/AE

We see that for k ≥ 3 we have

Dku = (k − 2)λ2Dk−3u+ λ2xDk−2u.

The Taylor series expansion of u(x) is:

u(x) = −u0 +
F0

AE
x− λ2

3!
u0x

3 +
2λ2

4!

F0

AE
x4 − 4λ4

6!
u0x

6 +
10λ4

7!

F0

AE
x7 − · · ·

4Sir George Biddell Airy 1801-1892.
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Letting u′(ℓ) = 0 we have:

0 =
F0

AE
− λ2

2
u0ℓ

2 +
λ2

3

F0

AE
ℓ3 − λ4

30
u0ℓ

5 +
λ4

72

F0

AE
ℓ6 − · · · (2.19)

Therefore we need to find λ such that

G(λ) ≈ F0

u0

(
1

AE
+
λ2ℓ3

3AE
+

λ4ℓ6

72AE

)

− λ2ℓ2

2
− λ4ℓ5

30
= 0. (2.20)

Using the experimental result F0/u0 = 22.22 kN/mm, we find λ ≈ 1.0767 ×
10−2 m−3/2 and hence k ≈ 325.0 kN/m3.

In this example the conceptual development of a mathematical model was
illustrated in a simple setting. Model A and Model B differ by the definition
of the constant c. The characterizing parameters c and k were determined by
calibration. Calibration is part of the conceptualization process because defini-
tion of the mathematical model depends on information obtained by calibration
experiments.

Exercise 2.1.3 Determine whether using 4 significant digits in the estimate
k ≈ 325.1 kN/m3 in Example 2.1.3 is justified.

2.1.3 Validation

Making a prediction based on a mathematical model concerning the outcome of
a physical experiment, then testing to see whether the prediction is correct, is
called validation. Validation involves one or more metrics and the corresponding
criteria. The metrics and criteria depend on the intended use of the model. For
testing the model described in Example 2.1.3 we define the metric to be the ratio
F0/u0 and the criterion is the corresponding tolerance. Validation is illustrated
by the following example.

Example 2.1.4 On examining the pull test data in Example 2.1.3, we see that
each 100 kN increment in the applied force resulted in 4.5 mm increment in dis-
placement. Therefore the assumption that the pile is supported by a distributed
linear spring is consistent with the available observations. However, it is not
possible to determine from these observations how the spring coefficient c varies
with x.

Let us assume that a second pile, driven to 8.5 m depth (i.e., ℓ = 8.5 in
Fig. 2.4), is to be tested. Based on Model A and Model B we predict the
test results shown in the second and third columns of Table 2.2 and we state
our criterion as follows: A model will be rejected if the difference between the
predicted and observed values of F0/u0 exceeds the tolerance of 5 %.

Let us suppose that we observe the set of displacements shown in the fourth
column of Table 2.2. Since the ratio predicted by Model A (F0/u0)

A
pred = 16.0

kN/mm and the observed ratio (F0/u0)obs = 11.9 kN/mm differ by more than 5
percent Model A is rejected. On the other hand, the ratio predicted by Model B
(F0/u0)

B
pred = 11.5 kN/mm and the observed ratio differ by less than 5 percent.

Therefore Model B passes the validation test.
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Table 2.2: Predicted and observed data.

F0 u0 u0 u0

Applied Model A Model B Experiment
kN mm mm mm
200 12.5 17.4 16.5
300 18.8 26.0 25.1
400 25.0 34.7 33.7

Remark 2.1.2 Example 2.1.4 illustrates some of the difficulties associated with
validation of mathematical models. Typically only a very limited number of
experimental observations are available. The information being sought, in this
case c(x), is not observable directly but must be inferred from some observable
information. If force-displacement data were available for one depth only then
it would not be possible to decide whether c is constant or not. Based on two
pile tests of differing lengths, it was possible to reject the hypothesis that c is
a constant and establish that the available information is consistent with linear
variation of the form c = kx, but it was not possible to establish with certainty
that c varies linearly.

The probability that a model adequately represents physical reality increases
with the number of successful predictions of the outcomes of independent ex-
periments but the inherent cognitive uncertainty cannot be removed completely
by any number of experiments [38]. In fact, it is possible to construct several
models that match a given set of observations. In engineering and scientific
applications the simplest model is preferred.

Remark 2.1.3 In order to focus on the main points of calibration in Example
2.1.3 and validation Example 2.1.4, the input data and physical observations
were treated without consideration of their statistical aspects. Since there are
uncertainties in model parameters, comparing predictions with the outcome of
experiments should be understood in a statistical sense.

Let us assume that, having considered statistical uncertainties in the input
data, we predict a log-normal probability density function (pdf) for the mate-
rial constant k in Example 2.1.4. Let us assume further that the criterion for
rejection was set at the 95 % confidence interval. We make an experimental
observation and compute kexp. Let us assume that kexp falls within the 95 %
confidence interval. This shows that the outcome of the experiment is consis-
tent with the prediction based on the model at the 95 % confidence level. This
should not be interpreted to mean that we are 95 % confident that the model is
valid. What this means is that the chance that a valid model would be rejected
is 5 %. The chance of rejecting a valid model would be reduced by setting the
confidence interval at (say) 99 %, however the chance of not rejecting an invalid
model would then be increased.
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Exercise 2.1.4 Using the calibration results for Model B in Example 2.1.3,
predict the F0/u0 ratio for a pile driven to a depth of 17.5 m.

2.1.4 The scalar elliptic boundary value problem in 1D

Equation (2.7) is a second order elliptic ordinary differential equation (ODE).
In Chapter 3 it will be shown that the mathematical model of steady state heat
conduction in a bar will result in a second order elliptic ODE also. Although
the physical meaning of the unknown functions and the coefficients differ, the
mathematical problem is essentially the same. For this reason we will focus on
the mathematical problem:

− (κu′)
′
+ cu = f(x) on 0 ≤ x ≤ ℓ (2.21)

where κ(x) ≥ κ0 > 0, c(x) ≥ 0 and f(x) are bounded functions subject to the
restriction that the indicated operations are defined.

The boundary conditions are analogous to those described in Section 2.1.1,
however in the mathematical literature they are known by different names. The
displacement boundary condition is called essential or Dirichlet boundary con-
dition5. The force boundary condition is called Neumann boundary condition6.
The spring boundary condition is called mixed or Robin boundary condition7.
The Neumann and Robin boundary conditions are also called natural boundary
conditions.

Although eq. (2.21) may be understood to represent an elastic bar, where u is
the displacement vector, or heat conduction in a bar, where u is the temperature,
a scalar function, symmetry and antisymmetry are treated differently: When
u is a scalar function then the symmetry boundary condition is u′(ℓ/2) = 0 and
the antisymmetry condition is u(ℓ/2) = 0. The symmetric and antisymmetric
boundary conditions for the elastic bar are illustrated in Fig. 2.3.

2.2 Approximate solution

A brief introduction to approximation based on minimizing the error of an
integral expression is presented in the following.

Consider the problem given by eq. (2.21) with the boundary conditions
u(0) = u(ℓ) = 0 and let us seek to approximate u by un, defined as follows:

un :=

n∑

j=1

ajϕj(x) ϕj(x) := xj(ℓ− x) (2.22)

such that the integral

I :=
1

2

∫ ℓ

0

(
κ(u′ − u′n)2 + c(u − un)2

)
dx (2.23)

5Johann Peter Gustav Lejeune Dirichlet 1805-1859.
6Franz Ernst Neumann 1798-1895.
7Victor Gustave Robin 1855-1897.
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is minimum. It will be shown in the following that minimization of the error
in the sense of this integral will allow us to find an approximation to the exact
solution u without knowing u.

The function un is called a trial function. The functions ϕj(x) are called
basis functions. Selection of the type and number of basis functions will, of
course, influence the error of approximation u− un. Discussion of this point is
postponed in order to keep our focus on the basic algorithmic structure of the
method.

Note that ϕj(0) = ϕj(ℓ) = 0, hence un satisfies the prescribed boundary
conditions for any choice of the coefficients ai. From the minimum condition we
have:

∂I
∂ai

= 0 :

∫ ℓ

0

(κ(u′ − u′n)ϕ′
i + c(u − un)ϕi) dx = 0 i = 1, 2, . . . , n.

(2.24)
Recalling the product rule, we write:

κu′ϕ′
i = (κu′ϕi)

′ − (κu′)′ϕi

and substitute this expression into eq. (2.24) to obtain:

(κu′ϕi)x=ℓ − (κu′ϕi)x=0
︸ ︷︷ ︸

0

+

∫ ℓ

0

(−(κu′)′ + cu)
︸ ︷︷ ︸

f(x)

ϕi dx−
∫ ℓ

0

(κu′nϕ
′
i + cunϕi) dx = 0

where the first two terms are zero on account of the boundary conditions. This
equation can be written as:

∫ ℓ

0

(κu′nϕ
′
i + cunϕi) dx =

∫ ℓ

0

f(x)ϕi dx i = 1, 2, . . . , n. (2.25)

Observe that eq. (2.25) represents n algebraic equations in the n unknowns ai.
Therefore we are able to compute an approximation to u(x) without knowing
u(x), since only the given function f(x) is needed. Specifically, eq. (2.25) is
equivalent to

[K]{a} = {r} (2.26)

where {a} := {a1 a2 . . . an}T and the elements of [K] and {r} are, respectively;

kij :=

∫ ℓ

0

(
κ(x)ϕ′

i(x)ϕ
′
j(x) + c(x)ϕi(x)ϕj(x)

)
dx (2.27)

ri :=

∫ ℓ

0

f(x)ϕi(x) dx. (2.28)

Example 2.2.1 Consider the problem on I = (0, ℓ)

−u′′ + u = x u(0) = u(ℓ) = 0
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and assume that the goal is to determine u′(0). Let ℓ = 1. The exact solution
of this problem is

u = − 2e

e2 − 1
sinhx+ x and therefore u′(0) = 1 − 2e

e2 − 1
≈ 0.14908

where e is the base of the natural logarithm. We will seek to approximate u
using the basis functions ϕj(x) given in eq. (2.22) with n = 2. Therefore

k11 =

∫ 1

0

[(ϕ′
1)

2 + ϕ2
1] dx =

∫ 1

0

[
(1 − 2x)2 + x2(1 − x)2

]
dx =

11

30

k12 = k21 =

∫ 1

0

[ϕ′
1ϕ

′
2 + ϕ1ϕ2] dx =

∫ 1

0

[
(1 − 2x)(2x− 3x2) + x3(1 − x)2

]
dx =

11

60

k22 =

∫ 1

0

[(ϕ′
2)

2 + ϕ2
2] dx =

∫ 1

0

[
(2x− 3x2)2 + x4(1 − x)2

]
dx =

1

7

and

r1 =

∫ 1

0

xϕ1 dx =

∫ 1

0

x2(1 − x) dx =
1

12

r2 =

∫ 1

0

xϕ2 dx =

∫ 1

0

x3(1 − x) dx =
1

20
·

The problem is then to solve the system of linear equations:

[
11/30 11/60
11/60 1/7

]{
a1

a2

}

=

{
1/12
1/20

}

·

On solving we have a1 = 0.14588, and a2 = 0.16279, therefore the approximate
solution is:

un = u2 = 0.14588x(1− x) + 0.16279x2(1 − x)

and hence u′n(0) = 0.14588 and the relative error is:

|u′(0) − u′n(0)|
|u′(0)| = 0.021 (2.1 %).

In this example the exact solution was known and hence the relative error in the
data of interest could be computed. In general the exact solution is not known
therefore the relative error in the data of interest has to be estimated. Methods
of estimation will be discussed in subsequent chapters.

Exercise 2.2.1 Determine the relative error of (u′n)x=ℓ for the problem solved
in Example 2.2.1.

Remark 2.2.1 In engineering computations the goal is to determine some data
of interest. The data of interest are typically numbers or functions that depend
on the solution u(x) and/or its first derivative. For example, if eq. (2.21) is



30 CHAPTER 2. AN OUTLINE OF FEM

understood to represent an elastic bar then we may be interested in computing
the reaction force at x = 0, defined by F0 = (κu′)x=0. If, on the other hand,
eq. (2.21) is understood to represent heat conduction then we may be interested
in the rate of heat flow exiting the bar at x = 0 which is defined by q0 =
−(κu′)x=0.

We will be interested in finding an approximate solution, computing the data
of interest from the approximate solution, as illustrated by Example 2.2.1, and
estimating the relative error in the data of interest.

Remark 2.2.2 Observe that eq. (2.26) can be obtained by minimizing the
quadratic expression

π(un) :=
1

2

∫ ℓ

0

(
κ(u′n)2 + c(un)2

)
dx−

∫ ℓ

0

fun dx

=
1

2
{ a }T [K]{ a } − { a }T{ r } (2.29)

with respect to ai. Therefore the function that minimizes π(un) is also closest to
the exact solution u in the sense that the error defined by the integral expression
of eq. (2.23) is minimized. This method is known as the Rayleigh-Ritz method8

or simply as the Ritz method. The functional π(u) is called potential energy.

Exercise 2.2.2 Compute the coefficients a1 and a2 of Example 2.2.1 by mini-
mizing π(un) with respect to a1 and a2.

2.2.1 Basis functions

We defined the polynomial basis functions ϕj(x) := xj(ℓ − x), j = 1, 2, . . . , n
in eq. (2.22) and sought to minimize eq. (2.23) with respect to the coefficients
aj of these basis functions. This led to the definition of n algebraic equations
in n unknowns, represented by eq. (2.26). The solution of eq. (2.26) is unique,
provided that [K] is a non-singular matrix.

In order to ensure that [K] is non-singular, the basis functions must be
linearly independent. By definition, a set of functions ϕj(x), (j = 1, 2, . . . , n)
are linearly independent if

n∑

j=1

ajϕj(x) = 0

implies that aj = 0 for j = 1, 2, . . . , n. It is left to the reader to show that
ϕj(x), (j = 1, 2, . . . , n) are linearly independent.

Given a set of linearly independent functions ϕj(x), (j = 1, 2, . . . , n), the set
of functions S defined by

S := { un |un =

n∑

j=1

ajϕj(x)}

8Lord Rayleigh (John William Strutt) 1842-1919, Walter Ritz 1878-1909.
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is called the span and ϕj(x) are basis functions of S.
We could have defined other polynomial basis functions, for example;

un :=
n∑

i=1

ciψi(x) ψi(x) := x(ℓ − x)i. (2.30)

When two sets of basis functions {ϕ} := {ϕ1 ϕ2 . . . ϕn}T and {ψ} := {ψ1 ψ2 . . . ψn}T

can be written as
{ψ} = [B]{ϕ} (2.31)

where [B] is an invertible matrix of constant coefficients then both sets of basis
functions are said to have the same span. The following exercise demonstrates
that the approximate solution depends on the span of the basis functions, not
on the basis functions.

Exercise 2.2.3 Solve the problem of Example 2.2.1 using the basis functions

ψ1(x) = x(1 − x), ψ2(x) = x(1 − x)(1 − 2x)

and show that the solution u2 = b1ψ1(x) + b2ψ2(x) is the same as the solution
in Example 2.2.1. In this exercise the span is the set of polynomials of degree
3, subject to the restriction that they vanish in the boundary points.

Exercise 2.2.4 Let ϕi(x) = xi(ℓ − x), ψi(x) = x(ℓ − x)i and

un =

3∑

i=1

aiϕi(x) =

3∑

i=1

ciψi(x).

Determine the matrix [B] as defined in eq. (2.31) and, assuming that the values
of ai are given, find an expression for ci in terms ai (i = 1, 2, 3) and [B].

2.3 Generalized formulation in one dimension

We have seen in Section 2.2 that it was possible to obtain an approximate
solution to a differential equation without knowing the exact solution. This
depended on a seemingly fortuitous choice of the integral expression I and zero
boundary conditions, allowing us to replace the unknown exact solution with
the known function f following integration by parts. In this section the reasons
for the choice of I are explained in a general setting, without restriction on the
boundary conditions.

Once again our starting point is eq. (2.21):

− (κu′)
′
+ cu = f(x)

subject to boundary conditions to be discussed later. Let us multiply this
equation by an arbitrary function v(x) defined on I = (0, ℓ) and integrate:

∫ ℓ

0

(

− (κu′)
′
+ cu

)

v dx =

∫ ℓ

0

fv dx. (2.32)
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Clearly, if u is the solution of eq. (2.21) then this equation will be satisfied for
all v for which the indicated operations are defined. Integrating the first term
by parts:

−
∫ ℓ

0

(κu′)
′
v dx = −

∫ ℓ

0

[

(κu′v)
′ − κu′v′

]

dx =

− [κu′v]x=ℓ + [κu′v]x=0 +

∫ ℓ

0

κu′v′ dx

we have:

∫ ℓ

0

(κu′v′ + cuv) dx =

∫ ℓ

0

fv dx+ [κu′v]x=ℓ − [κu′v]x=0 . (2.33)

Note that the integrand (κu′)′v became κu′v′ plus two boundary terms. This
equation will be the starting point for our discussion of the generalized formu-
lation. The specific statement of the generalized formulation for a particular
problem depends on the boundary conditions. First, however, some useful defi-
nitions and notation are introduced.

2.3.1 Definitions and notation

We denote the set of functions defined on the interval I = (0, ℓ) that satisfy the
inequality:

E(I) :=

{

u
∣
∣
∣

∫ ℓ

0

(
κ(u′)2 + cu2

)
dx ≤ C <∞

}

(2.34)

where C is some positive number; κ ≥ κ0 > 0 and c ≥ 0. E(I) is called
the energy space. For any u ∈ E(I) and v ∈ E(I) the integral expressions in
eq. (2.33) are defined. This follows from the Schwarz inequality9, see Appendix
A.

When u(0) = û0 and/or u(ℓ) = ûℓ are specified on the boundaries then
the boundary condition is called an essential or Dirichlet boundary condition.
The functions in E(I) that satisfy the essential boundary conditions are called
admissible functions. The set of all admissible functions is called the trial space
and is denoted by Ẽ(I). This notation should be understood as follows:

(a) If essential boundary conditions are specified at x = 0 and x = ℓ then

Ẽ(I) := {u |u ∈ E(I), u(0) = û0, u(ℓ) = ûℓ}. (2.35)

Corresponding to Ẽ(I) is the test space E0(I) defined as follows:

E0(I) := {u |u ∈ E(I), u(0) = 0, u(ℓ) = 0}. (2.36)

9Hermann Amandus Schwarz 1843-1921.
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(b) If essential boundary condition is specified only at x = 0 then

Ẽ(I) := {u |u ∈ E(I), u(0) = û0} (2.37)

E0(I) := {u |u ∈ E(I), u(0) = 0}. (2.38)

(c) If essential boundary condition is specified only at x = ℓ then

Ẽ(I) := {u |u ∈ E(I), u(ℓ) = ûℓ} (2.39)

E0(I) := {u |u ∈ E(I), u(ℓ) = 0}. (2.40)

(d) If the essential boundary conditions are homogeneous, i.e., û0 = 0, ûℓ = 0
then Ẽ(I) = E0(I).

(e) If essential boundary conditions are not prescribed on either boundary then
Ẽ(I) = E0(I) = E(I).

(f) If periodic boundary conditions are prescribed then both the trial and test
spaces are:

Ê(I) = {u |u ∈ E(I), u(0) = u(ℓ)}. (2.41)

We are now in a position to discuss generalized formulations for various bound-
ary conditions.

Remark 2.3.1 Note that Ẽ(I) is not a linear space. Refer to the Appendix,
Section A.2. It is seen that Ẽ(I) does not satisfy condition 1 whereas E0(I)
and Ê(I) satisfy all of the conditions of Section A.2.

2.3.2 Essential boundary conditions

Essential boundary conditions are enforced by restriction. This was done in the
special case discussed in Section 2.2 where the homogeneous essential boundary
conditions û0 = ûℓ = 0 were used and the basis functions were defined in
eq. (2.22) so that the boundary conditions prescribed on u were satisfied for an
arbitrary choice of the coefficients ai.

The known boundary conditions are imposed on the trial functions u and the
test function v is set to zero on the boundary points where essential boundary
conditions were prescribed. In this way the boundary terms (the terms in the
square bracket in eq. (2.33)) vanish and the generalized formulation is stated as
follows:
“Find u ∈ Ẽ(I) such that

∫ ℓ

0

(κu′v′ + cuv) dx

︸ ︷︷ ︸

B(u,v)

=

∫ ℓ

0

fv dx

︸ ︷︷ ︸

F (v)

for all v ∈ E0(I)”. (2.42)

We will use the shorthand notationB(u, v) for the left hand side and F (v) for the
right hand side, as indicated in eq. (2.42). B(u, v) is a symmetric bilinear form,
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i.e., it is linear with respect to each of its arguments and B(u, v) = B(v, u)
and F (v) is a linear functional. The properties of bilinear forms and linear
functionals are given in Appendix A.

Alternatively we can select an arbitrary function u⋆ from Ẽ(I) and write:

u = ū+ u⋆ (2.43)

where ū ∈ E0(I). Clearly, the prescribed boundary conditions are satisfied for
any choice ū ∈ E0(I). Substituting eq. (2.43) into eq. (2.33), the generalized
formulation can be stated as follows: “Find ū ∈ E0(I) such that

∫ ℓ

0

(κū′v′ + cūv) dx

︸ ︷︷ ︸

B(ū,v)

=

∫ ℓ

0

fv dx −
∫ ℓ

0

(κ(u⋆)′v′ + cu⋆v) dx

︸ ︷︷ ︸

F (v)

(2.44)

for all v ∈ E0(I)”.

Example 2.3.1 Let us state the generalized formulation for the following prob-
lem:

−u′′ = (2 + x)ex u(0) = 1, u(2) = −1.

In this case Ẽ(I) = {u |u ∈ E(I), u(0) = 1, u(2) = −1}. Let us select
u⋆ = 1 − x and substitute u = ū + u⋆ into eq. (2.33). The statement of the
generalized formulation is now: “Find ū ∈ E0(I) such that B(ū, v) = F (v) for
all v ∈ E0(I)” where

B(ū, v) :=

∫ 2

0

ū′v′ dx, F (v) :=

∫ 2

0

(2 + x)exv dx−
∫ 2

0

(−1)v′ dx.

Example 2.3.2 In this example it is shown that eq. (2.33) leads to the same
system of equations as obtained in Section 2.2. To obtain an approximation to
the solution of eq. (2.21), we substitute un from eq. (2.22) for u and similarly
substitute vn for v:

vn :=

n∑

i=1

biϕi(x), ϕi(x) := xi(ℓ − x)

where bi i = 1, 2, . . . , n are a set of arbitrary numbers. Since vn(0) = vn(ℓ) = 0,
the terms in the square brackets in eq. (2.33) vanish and we have

{b}T [K]{a} = {b}T{r}

where {b} := {b1 b2 . . . bn}T and the definitions of [K] and {r} are the same
as in eq. (2.27). Equivalently,

{b}T ([K]{a} − {r}) = 0.

Since this relationship must hold for any choice of {b}, we must have [K]{a} =
{r} which is exactly the same as the result obtained in Section 2.2 with kij

(resp. ri) defined by eq. (2.27) (resp. eq. (2.28)).
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Exercise 2.3.1 Show that

(a) B(u1 + u2, v) = B(u1, v) +B(u2, v)

(b) B(u + v, u+ v) = B(u, u) + 2B(u, v) +B(v, v).

2.3.3 Neumann boundary conditions

When u′ or more commonly F = κu′ is prescribed on a boundary then the
boundary condition is called a Neumann boundary condition. The treatment
of Neumann boundary conditions is straightforward. Let F0 = (κu′)x=0 and
Fℓ = (κu′)x=ℓ be given. Substituting Fℓ and F0 into eq. (2.33), the generalized
formulation is stated as follows: “Find u ∈ E(I) such that B(u, v) = F (v) for
all v ∈ E(I)” where

B(u, v) =

∫ ℓ

0

(κu′v′ + cuv) dx, F (v) =

∫ ℓ

0

fv dx+ Fℓv(ℓ) − F0v(0). (2.45)

Note that there are no restrictions on u or v at the endpoints.

Remark 2.3.2 When c = 0 and Neumann boundary conditions are prescribed
then, since eq. (2.45) must hold for all choices of v ∈ E(I), it must hold for
v = C where C is a constant. Therefore we must have:

∫ ℓ

0

f dx + Fℓ − F0 = 0. (2.46)

In other words, f , F0 and Fℓ cannot be assigned arbitrarily. The tractions
acting on the bar and the bar forces acting on the boundary points must be in
equilibrium.

2.3.4 Robin boundary conditions

A linear combination of u′ and u is given at the boundary:

(κu′)x=0 = β0(u(0) − U0)

(κu′)x=ℓ = βℓ(Uℓ − u(ℓ))

where β0 and βℓ are positive numbers. Substituting these expressions into
eq. (2.33), the generalized formulation is once again stated as follows: “Find
u ∈ E(I) such that B(u, v) = F (v) for all v ∈ E(I)” where

B(u, v) :=

∫ ℓ

0

(κu′v′ + cuv) dx + β0u(0)v(0) + βℓu(ℓ)v(ℓ)

F (v) :=

∫ ℓ

0

fv dx+ β0U0v(0) + βℓUℓv(ℓ).

There are no restrictions on u or v at the endpoints. The spring boundary
condition described in Section 2.1.1 is a Robin boundary condition.



36 CHAPTER 2. AN OUTLINE OF FEM

Example 2.3.3 Any combination of Dirichlet, Neumann and Robin boundary
conditions may be prescribed. For example, let us consider the problem

− (κu′)
′
+ cu = f(x) u(0) = û0, (κu′)x=ℓ = βℓ(Uℓ − u(ℓ)).

In this case Ẽ(I) is defined by eq. (2.37), E0(I) is defined by eq. (2.38) and

B(ū, v) :=

∫ ℓ

0

(κū′v′ + cūv) dx+ βℓu(ℓ)v(ℓ)

F (v) :=

∫ ℓ

0

fv dx+ βℓUℓv(ℓ) −
∫ ℓ

0

(κ(u⋆)′v′ + cu⋆v) dx

where u⋆ is an arbitrary fixed function from Ẽ(I). For example, we may select
u⋆ = û0(1 − x/ℓ) or simply u⋆ = û0.

The generalized formulation of this problem is stated as follows: “Find ū ∈
E0(I) such that B(ū, v) = F (v) for all v ∈ E0(I)”. The exact solution is then:
u = ū+ u⋆.

Exercise 2.3.2 State the generalized formulation for the following problem:

− (κu′)
′
+ cu = f(x) (κu′)x=0 = −q̂0, u(ℓ) = 0.

Exercise 2.3.3 State the generalized formulation for the following problem:

− (κu′)
′
+ cu = f(x) (κu′)x=0 = β0(u(0) − U0), u(ℓ) = ûℓ.

Exercise 2.3.4 State the generalized formulation for the following problem:

− (κu′)
′
+ cu = f(x) (κu′)x=0 = −q̂0, (κu′)x=ℓ = βℓ(Uℓ − u(ℓ)).

2.4 Finite element approximations

We have re-cast a differential equation in the form of a generalized formulation
which reads: “Find u ∈ Ẽ(I) such that B(u, v) = F (v) for all v ∈ E0(I)”. It
may appear that nothing has been gained: This problem is more difficult to
solve than the differential equation was, since there are an infinite number of
trial functions for u that must be tested against an infinite number of v.

One of the main advantages of the generalized formulation is that it serves
as a framework for obtaining approximate solutions. To obtain an approximate
solution we construct a finite-dimensional subspace of E(I), as we have done in
Section 2.2, where we selected

un =

n∑

j=1

ajϕj(x)

with n = 2. The family of functions that can be written in this way will be
denoted by S(I). The functions ϕj(x), called basis functions, will be defined
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such that S(I) ⊂ E(I). The number n is the dimension of S(I). We will use the
notation S̃(I) := S(I) ∩ Ẽ(I); S0(I) = S(I) ∩ E0(I). The dimension of space
S0(I), that is, the number of linearly independent functions in S0(I), is called
the number of degrees of freedom and denoted by N .

In the finite element method the space S is constructed by partitioning the
solution domain into elements and defining polynomial basis functions on the
elements. Approximation spaces so constructed are called finite element spaces.
A particular partition is called a finite element mesh and will be denoted by
∆. The number of elements will be denoted by M(∆). A simple illustration is
given in the following example.

Example 2.4.1 Typical finite element basis functions in one dimension are
illustrated in Fig. 2.5 where the domain I = (0, ℓ) is partitioned into three
intervals (i.e., M(∆) = 3), called finite elements and the polynomial degrees
p1 = 2, p2 = 1 and p3 = 3 are assigned. The length of the elements is denoted
by ℓk, k = 1, 2, 3. There are four node points, labeled xi, i = 1, 2, 3, 4. There
are seven basis functions, labeled ϕ1(x), . . . , ϕ7(x). The numbering of the basis
functions is arbitrary, however it is good practice to number them by polynomial
degree: The first four basis functions are piecewise linear. For example,

ϕ2(x) =







x− x1

x2 − x1
if x1 ≤ x ≤ x2

x3 − x

x3 − x2
if x2 < x ≤ x3

0 otherwise.

The basis functions ϕ5(x), ϕ6(x) are quadratic functions. For example,

ϕ6(x) =

{

(x − x3)(x − x4) if x3 ≤ x ≤ x4

0 otherwise.

The basis function ϕ7(x) is a cubic polynomial on element 3 and is zero outside
of element 3. The finite element space, characterized by the mesh and the
polynomial degree of elements as shown in Fig. 2.5, is the set of all functions
that can be written in the form:

u =

7∑

j=1

ajϕj(x). (2.47)

Exercise 2.4.1 Refer to Fig. 2.5. Write down the basis function ϕ7(x).

Exercise 2.4.2 Show that the set of basis functions

ψ1(x) := ϕ1(x) + ϕ2(x), ψ2(x) := ϕ2(x) − ϕ1(x),

ψj(x) = ϕj(x) j = 3, 4, . . . , 7 (2.48)

has the same span as the set ϕj(x), j = 1, 2, . . . , 7 defined in Example 2.4.1.
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Figure 2.5: Typical finite element basis functions in one dimension.

Remark 2.4.1 The key difference between the original form of the Rayleigh-
Ritz method and the finite element method is that in the Rayleigh-Ritz method
the basis functions are analytic functions defined on the entire solution do-
main whereas in the finite element method the basis functions are character-
ized by piecewise polynomials that are nonzero over a few elements only. In
one-dimensional applications, for example, they are nonzero over at most two
elements, as seen in Fig. 2.5. This makes it possible to construct algorithms
suitable for handling a great variety of problems very efficiently.

The partition of the domain into finite elements makes it possible to con-
struct basis functions analogous to those discussed in Example 2.4.1 on compli-
cated domains such as shown in Fig. 2.6.

In the finite element method the approximating functions are piecewise poly-
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Figure 2.6: Example of a 3-dimensional finite element mesh.

nomials. There are two reasons for this: Piecewise polynomials are advantageous
from the point of view of implementation and they have favorable approximation
properties.

2.4.1 Error measures and norms

Since we will be solving various problems approximately, we need to ask; what is
the error of approximation? Various quantitative measures of error are used in
connection with finite element analyses. The most useful measure is the relative
error in terms of the data of interest which we computed in Example 2.2.1

There are other measures, called norms, useful for measuring the quality
of the approximate solution. Three norms are defined for functions of a single
variable in the following. Their generalization to two and three dimensions is
straightforward. Norms are analogous to the length of a vector in Euclidean
space10 . The definitive properties of norms are listed in the Appendix, Section
A.1.

The energy norm

It is natural to use the energy norm in connection with the formulation discussed
in Section 2.2 (page 27) because the coefficients aj in eq. (2.22) are determined
in such a way that the error measured in the energy norm is minimal. This is
Theorem 2.4.2 (see page 41). By definition:

‖u‖E :=

√

1

2
B(u, u). (2.49)

In Example 2.2.1

B(u, u) =

∫ ℓ

0

(
κ(u′)2 + cu2

)
dx

10Euclid of Alexandria about 325-265 BC.
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and ‖u − un‖E = 1.01606 × 10−3 and ‖u‖E = 0.10074. Therefore the percent
relative error measured in energy norm is

(er)E :=
‖u− un‖E

‖u‖E
= 1.01 %.

The maximum norm

The maximum norm of a continuous function u(x) defined on the interval Ī is:

‖u‖max := max
x∈Ī

|u(x)| (2.50)

and the relative error in maximum norm is defined by:

(er)max :=
‖u− un‖max

‖u‖max
· (2.51)

Often the percent relative error is given. The maximum norm is usually ap-
proximated by computing the maximum on some fine grid. The abscissa at
which ‖u−un‖max is computed may be different from the abscissa at which the
reference value ‖u‖max was computed.

In Example 2.2.1, using 100 equally spaced grid points, max |u − un| =
2.3 × 10−4 at x = 0.51; max |u| = 5.83 × 10−2 at x = 0.60. Therefore the
relative error is (er)max = 0.39 %.

The L2 norm

The L2 norm of a function u defined on the interval I = (0, ℓ) is:

‖u‖L2 :=

√
∫ ℓ

0

u2 dx. (2.52)

The definition of relative error in L2 norm is analogous to eq. (2.51). In Exam-
ple 2.2.1 ‖u− un‖L2 = 1.487 × 10−4 and ‖u‖L2 = 4.183 × 10−2. Therefore the
percent relative error measured in L2 norm is

(er)L2 :=
‖u− un‖L2

‖u‖L2

= 0.36 %.

Remark 2.4.2 The error depends on the norm in which it is measured. The
choice of the norm depends on the purpose of computation.

Exercise 2.4.3 Obtain an approximate solution for the problem

−u′′ + u = 1, u(0) = u(1) = 0

by minimizing π given by eq. (2.29). Use n = 2 and the same basis functions as
in Example 2.2.1. Determine the exact solution and compute the relative error
in maximum norm and in energy norm.
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2.4.2 The error of approximation in energy norm

In Section 2.2 we minimized the integral expression (2.23) to obtain an approx-
imate solution to the problem (2.21). We are now in a position to generalize
this to any combination of the three kinds of boundary conditions discussed in
Section 2.3.

In the following we will denote the exact solution by uEX and the finite
element solution by uFE . The approximation problem is stated as follows:
“Find uFE ∈ S̃(I) such that B(uFE , v) = F (v) for all v ∈ S0(I)”.

Theorem 2.4.1 The error of approximation e := uEX − uFE is orthogonal to
all test functions in S0(I) in the following sense:

B(e, v) = 0 for all v ∈ S0(I). (2.53)

This is a basic property of the error of approximation, known as the Galerkin
orthogonality11. Proof: Since S0(I) ⊂ E0(I),

B(uEX , v) =F (v) for all v ∈ S0(I)

B(uFE , v) =F (v) for all v ∈ S0(I).

On subtracting the second equation from the first eq. (2.53) is obtained. �

An important theorem is proven in the following. This theorem establishes
that the finite element method will select the coefficients of the basis functions
in such a way that the energy norm of the error ‖e‖E will be minimum.

Theorem 2.4.2 The finite element solution minimizes the error in energy norm
on the space S̃(I):

‖uEX − uFE‖E = min
u∈S̃(I)

‖uEX − u‖E . (2.54)

We have seen a direct application of this theorem in Section 2.2. Once again we
write e := uEX − uFE . For an arbitrary v ∈ S0(I), ‖v‖E 6= 0, we have

‖e+ v‖2
E =

1

2
B(e+ v, e+ v) =

1

2
B(e, e) +B(e, v)

︸ ︷︷ ︸

0

+
1

2
B(v, v)
︸ ︷︷ ︸

‖v‖2
E>0

.

By eq. (2.53) B(e, v) = 0 therefore for any ‖v‖E 6= 0 we have ‖e+ v‖2
E > ‖e‖2

E

which was to be proven. �

This theorem shows that the selection S(I) is of crucial importance, since the
error of approximation is determined by S(I). This theorem also shows that if
uEX happens to lie in S(I) then uFE = uEX . Furthermore, this theorem shows
that if we construct a sequence of finite element spaces S1 ⊂ S2 ⊂ · · · ⊂ Sm and

compute the corresponding finite element solutions u
(1)
FE, u

(2)
FE , . . . , u

(m)
FE , then

the error measured in energy norm will decrease monotonically with respect to
increasing m.

11Boris Grigorievich Galerkin, 1871-1945.
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2.5 FEM in one dimension

In this section the key algorithmic procedures common to all finite element
computer programs are outlined in the simplest setting. Although the discussion
covers the one-dimensional case only, analogous procedures apply to two- and
three-dimensional problems.

2.5.1 The standard element

In order make the computation of the coefficient matrices and load vectors
suitable for implementation in a computer program, the computations are per-
formed element by element. In one dimension the kth element is characterized
by the node points xk and xk+1 of the mesh ∆. The mesh is the set of elements
Ik := {x |xk < x < xk+1}, k = 1, 2, . . . ,M(∆) and ℓk := xk+1 − xk is the size
of element k.

In order to standardize the element-level computations, a standard element
Ist is defined:

Ist := {ξ | − 1 < ξ < +1}. (2.55)

The standard element is mapped into the kth element by the mapping function:

x = Qk(ξ) :=
1 − ξ

2
xk +

1 + ξ

2
xk+1 ξ ∈ Ist. (2.56)

The inverse map is:

ξ = Q−1
k (x) :=

2x− xk − xk+1

xk+1 − xk
x ∈ Ik. (2.57)

Remark 2.5.1 The mapping of the standard element Ist onto the “real” ele-
ment Ik is not unique. For example, the mapping

x =
1

2
ξ(ξ − 1)xk +

1

2
ξ(1 + ξ)xk+1 ξ ∈ Ist

would serve the same purpose as eq. (2.56). It will be shown, however, that in
general the simplest mapping functions are preferable. In special cases there are
some exceptions, however.

2.5.2 The standard polynomial space

The polynomials of degree p defined on the standard element Ist will be de-
noted by Sp(Ist). The basis functions that span Sp(Ist) are usually called shape
functions. We will discuss two types of shape functions used in FEA programs:
Lagrange12 and hierarchic shape functions that are scaled integrals of Legen-
dre13 polynomials. We will use the notation Ni(ξ) (i = 1, 2, . . . , p+ 1) for both

12Joseph-Louis Lagrange 1736-1813.
13Adrien-Marie Legendre 1752-1833.
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types of shape functions. For S1(Ist) the shape functions for both sets are:

N1(ξ) :=
1 − ξ

2
(2.58)

N2(ξ) :=
1 + ξ

2
· (2.59)

Lagrange shape functions

The standard domain is partitioned into p sub-intervals. The lengths of the
sub-intervals may vary. The node points are: ξ1 = −1, ξ2 = 1 and −1 < ξ3 <
ξ4 < · · · < ξp+1 < 1. The shape functions for Sp(Ist) are:

Ni(ξ) :=

p+1
∏

k=1
k 6=i

ξ − ξk
ξi − ξk

i = 1, 2, . . . , p+ 1 ξ ∈ Ist· (2.60)

Note that

Ni(ξj) =

{

1 if i = j

0 if i 6= j
and

p+1
∑

i=1

Ni(ξ) = 1. (2.61)

For example, for p = 2 the equally spaced node points are ξ1 = −1, ξ2 = 1,
ξ3 = 0 and the three Lagrange shape functions as illustrated in Fig. 2.7.

Figure 2.7: Lagrange shape functions in one dimension, p = 2.

Exercise 2.5.1 Write down the Lagrange shape functions for S3(Ist) using
equally spaced node points.



44 CHAPTER 2. AN OUTLINE OF FEM

Hierarchic shape functions based on Legendre polynomials

It is advantageous to retain the definitions (2.58) and (2.59) for p = 1 and then
for p ≥ 2 define the shape functions as follows:

Ni(ξ) =

√

2i− 3

2

∫ ξ

−1

Pi−2(t) dt i = 3, 4, . . . , p+ 1 (2.62)

where Pi(t) are the Legendre polynomials. These shape functions have the
following important properties:

(a) Orthogonality. For i, j ≥ 3:

∫ +1

−1

dNi

dξ

dNj

dξ
dξ =

{

1 if i = j

0 if i 6= j.
(2.63)

This property follows directly from the orthogonality of Legendre polyno-
mials, see eq. (A.13) in the Appendix.

(b) The shape functions of Sp−1(Ist) are a subset of the shape functions of
Sp(Ist). Shape functions that have this property are called hierarchic
shape functions.

(c) These shape functions vanish at the endpoints of Ist: Ni(−1) = Ni(+1) = 0
for i ≥ 3.

The first five hierarchic shape functions are shown in Fig. 2.8. Observe that all
roots lie in Ist.

Exercise 2.5.2 Show that for the hierarchic shape functions, defined by eq. (2.62),
Ni(−1) = Ni(+1) = 0 for i ≥ 3.

Exercise 2.5.3 Show that the hierarchic shape functions defined by eq. (2.62)
can be written in the form:

Ni(ξ) =
1

√

2(2i− 3)
(Pi−1(ξ) − Pi−3(ξ)) i = 3, 4, . . . (2.64)

Hint: Use eq. (A.12) in Appendix A.

2.5.3 Finite element spaces

We are now in a position to provide a precise definition of finite element spaces
in one-dimension: A finite element space S is a set of continuous functions
characterized by the finite element mesh ∆, the assigned polynomial degrees pk

and the mapping functions Qk, k = 1, 2, . . . ,M(∆). Specifically,

S = S(∆,p,Q) = {u |u ∈ E(I), u(Qk(ξ)) ∈ Spk(Ist), k = 1, 2, . . . ,M(∆)}
(2.65)
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Figure 2.8: The first five hierarchic shape functions in one dimension.

where p and Q represent, respectively, the arrays of the assigned polynomial
degrees and the mapping functions. The expression u(Qk(ξ)) ∈ Spk(Ist) indi-
cates that on element Ik u(x) is mapped from the standard polynomial space
Spk(Ist). If linear mapping is used then the finite element space is comprised of
piecewise polynomial functions.

It is shown in Section 2.6.4 that if u ∈ E(I) then u must be a continuous
function. Of course, it would be possible to enforce levels of continuity higher
than the minimum required. For example, we could require the first derivatives
of the basis functions to be continuous also. However enforcement of higher
levels of continuity than the minimum required is a restriction on the space
of admissible functions which, in view of Theorem 2.4.2, is detrimental to the
generality and good overall approximation properties of the method. For this
reason we will be concerned with finite element spaces that are exactly and
minimally continuous. In other words, not more than the minimal continuity
required for satisfying the condition that u ∈ E(I) will be enforced.

We will be concerned with approximations based sequences of finite element
spaces created by systematic mesh refinement or increase of the polynomial de-
gree of elements, or a combination of both. Systematic enlargement of finite
element spaces by mesh refinement, increase of the polynomial degree(s) of ele-
ments or a combination of both is called, respectively, h-extension, p-extension
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and hp-extension. When a sequence of finite element spaces has the property
that S1 ⊂ S2 ⊂ S3 ⊂ · · ·Sn then the sequence is called hierarchic sequence.

A family of meshes ∆k is said to be quasiuniform if there exist positive
constants C1, C2, independent of k, such that

C1 ≤ h
(k)
max

h
(k)
min

≤ C2, k = 1, 2, . . . (2.66)

where h
(k)
max (resp. h

(k)
min) is the diameter of the largest (resp. smallest) element

in mesh ∆k.
A mesh is geometrically graded toward the point x = 0 on the interval

0 < x < ℓ if the node points are located as follows:

xk =

{

0 for k = 1

qM(∆)+1−kℓ for k = 2, 3, . . . ,M(∆) + 1

where 0 < q < 1 is called grading factor or common factor. Such meshes are
called geometric meshes.

A mesh is said to be a radical mesh if on the interval 0 < x < ℓ the node
points are located by

xk =

(
k − 1

M(∆)

)θ

ℓ θ > 1, k = 1, 2, . . . ,M(∆) + 1.

It will be shown in Chapter 6 that for a large and important class of problems
the ideal meshes are geometric meshes when the mesh is fixed and the poly-
nomial degree of elements is increased and the ideal meshes are radical meshes
when the polynomial degree is fixed and the number of elements is increased.

Exercise 2.5.4 Consider the family of mapping functions

x = Qk(α, ξ) :=
1

2
ξ(ξ − 1)xk + (1 − ξ2)(αxk + (1 − α)xk+1) +

1

2
ξ(1 + ξ)xk+1

where 1/4 < α < 3/4. Show that letting α = 1/2 the shape function N2 is
mapped into (x−xk)/ℓk and all mapped shape functions are polynomials. Show
also that letting α = 3/4 the shape function N2 is mapped into

√

(x − xk)/ℓk.
In one dimension this mapping is not admissible because the mapped shape
function does not lie in the energy space. Similar mappings are admissible
however in two and three dimensions where elements mapped by analogous
functions are called quarter-point elements.

This exercise illustrates that when the mapping is linear (α = 1/2) then the
mapped shape functions are polynomials.

2.5.4 Computation of the coefficient matrices

In the finite element method the coefficient matrices are computed element by
element. These computations produce element level matrices that are “assem-
bled” in a separate step. The procedure is outlined in the following.
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Computation of the stiffness matrix

The first term of the bilinear form B(un, vn) is computed as a sum of integrals
over the elements

∫ ℓ

0

κ(x)u′nv
′
n dx =

M(∆)
∑

k=1

∫ xk+1

xk

κ(x)u′nv
′
n dx.

We will be concerned with the evaluation of the integral

∫ xk+1

xk

κ(x)u′nv
′
n dx =

∫ xk+1

xk

κ(x)





pk+1
∑

j=1

aj
dNj

dx





(
pk+1
∑

i=1

bi
dNi

dx

)

dx.

The shape functions Ni are defined on the standard domain Ist. Therefore the
indicated differential operations cannot be performed directly. Using

d

dx
=

d

dξ

dξ

dx
=

2

xk+1 − xk

d

dξ
≡ 2

ℓk

d

dξ
and dx =

xk+1 − xk

2
dξ ≡ ℓk

2
dξ

where ℓk := xk+1 − xk is the length of the kth element, we have:

∫ xk+1

xk

κ(x)u′nv
′
n dx =

2

ℓk

∫ +1

−1

κ(Qk(ξ))





pk+1
∑

j=1

aj
dNj

dξ





(
pk+1
∑

i=1

bi
dNi

dξ

)

dξ.

Defining:

k
(k)
ij :=

2

ℓk

∫ +1

−1

κ(Qk(ξ))
dNi

dξ

dNj

dξ
dξ (2.67)

the following expression is obtained:

∫ xk+1

xk

κ(x)u′nv
′
n dx =

pk+1
∑

i=1

pk+1
∑

j=1

k
(k)
ij ajbi ≡ {b}T [K(k)]{a}. (2.68)

The terms of the coefficient matrix k
(k)
ij are computable from the mapping,

the definition of the shape functions and the function κ(x). The matrix [K(k)]

is called the element stiffness matrix. Observe that k
(k)
ij = k

(k)
ji , hence [K(k)]

is symmetric. This follows directly from the symmetry of B(u, v) and the fact
that un ∈ S, vn ∈ S and the same basis functions are used for un and vn.

In the finite element method the integrals are evaluated by numerical inte-
gration. Numerical integration is discussed in Appendix B. In the important
special case where κ(x) = κk is constant on Ik it is possible to compute [K(k)]
once and for all. This is illustrated by the following example.

Example 2.5.1 When κ(x) = κk is constant on Ik and the hierarchic shape
functions defined in Section 2.5.2 are used then, except for the first two rows
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and columns, the elemental stiffness matrix is perfectly diagonal:

[K(k)] =
2κk

ℓk












1/2 −1/2 0 0 · · · 0
1/2 0 0 0

1 0 0
1 0

(sym.)
. . .

...
1












· (2.69)

Exercise 2.5.5 Assume that κ(x) = κk is constant on Ik. Using the Lagrange

polynomials defined in Section 2.5.2 for p = 2, compute k
(k)
11 and k

(k)
13 in terms

of κk and ℓk.

Computation of the Gram matrix

The second term of the bilinear form is also computed as a sum of integrals over
the elements:

∫ ℓ

0

c(x)unvn dx =

M(∆)
∑

k=1

∫ xk+1

xk

c(x)unvn dx.

We will be concerned with evaluation of the integral

∫ xk+1

xk

c(x)unvn dx =

∫ xk+1

xk

c(x)





pk+1
∑

j=1

ajNj





(
pk+1
∑

i=1

biNi

)

dx

=
ℓk
2

∫ +1

−1

c(Qk(ξ))





pk+1
∑

j=1

ajNj





(
pk+1
∑

i=1

biNi

)

dξ.

Defining:

m
(k)
ij :=

ℓk
2

∫ +1

−1

c(Qk(ξ))NiNj dξ (2.70)

the following expression is obtained:

∫ xk+1

xk

c(x)unvn dx =

pk+1
∑

i=1

pk+1
∑

j=1

m
(k)
ij ajbi = {b}T [M (k)]{a} (2.71)

where {a} := {a1 a2 . . . apk+1}T , {b}T := {b1 b2 . . . bpk+1} and

[M (k)] :=









m
(k)
11 m

(k)
12 · · · m1,pk+1

m
(k)
21 m

(k)
22 · · · m2,pk+1

...
. . .

...

m
(k)
pk+1,1 m

(k)
pk+1,2 · · · mpk+1,pk+1









·



2.5. FEM IN ONE DIMENSION 49

The terms of the coefficient matrix m
(k)
ij are computable from the mapping, the

definition of the shape functions and the function c(x). The matrix [M (k)] is
called the elemental Gram matrix14 or the elemental mass matrix. Observe that
[M (k)] is symmetric. In the important special case where c(x) = ck is constant
on Ik it is possible to compute [M (k)] once and for all. This is illustrated by
the following example.

Example 2.5.2 When c(x) = ck is constant on Ik and the hierarchic shape
functions defined in Section 2.5.2 are used then the elemental Gram matrix is
strongly diagonal. For example, for pk = 5 the elemental Gram matrix is:

[

M (k)
]

=
ckℓk
2





















2/3 1/3 −1/
√

6 1/3
√

10 0 0

2/3 −1/
√

6 −1/3
√

10 0 0

2/5 0 −1/5
√

21 0

2/21 0 −1/7
√

45
(sym.)

2/45 0

2/77





















(2.72)

Remark 2.5.2 For pk ≥ 2 a simple closed form expression can be obtained for
the diagonal terms and the off-diagonal terms. Using eq. (2.64) it can be shown
that:

m
(k)
ii =

ckℓk
2

1

2(2i− 3)

∫ +1

−1

(Pi−1(ξ) − Pi−3(ξ))
2 dξ

=
ckℓk

2

2

(2i− 1)(2i− 5)
, i ≥ 3 (2.73)

and all off-diagonal terms are zero for i ≥ 3, with the exceptions:

m
(k)
i,i+2 = m

(k)
i+2,i = −ckℓk

2

1

(2i− 1)
√

(2i− 3)(2i+ 1)
, i ≥ 3. (2.74)

Exercise 2.5.6 Assume that c(x) = ck is constant on Ik. Using the Lagrange

shape functions defined in Section 2.5.2 for p = 2, compute m
(k)
11 and m

(k)
13 in

terms of ck and ℓk.

2.5.5 Computation of the right hand side vector

Computation of the right hand side vector involves numerical evaluation of the
functional F (v), given that v ∈ S0. In particular, we write:

F (vn) =

∫ ℓ

0

f(x)vn dx =

M(∆)
∑

k=1

∫ xk+1

xk

f(x)vn dx.

14Jörgen Pedersen Gram 1850-1916.
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The element-level integral is computed from the definition of vn on Ik:

∫ xk+1

xk

f(x)vn dx =
ℓk
2

∫ +1

−1

f(Qk(ξ))

(
pk+1∑

i=1

b
(k)
i Ni

)

dξ =

pk+1∑

i=1

b
(k)
i r

(k)
i (2.75)

where

r
(k)
i :=

ℓk
2

∫ +1

−1

f(Qk(ξ))Ni(ξ) dξ (2.76)

which can be computed from the mapping, the given function f(x) and the
definition of the shape functions.

Example 2.5.3 Let us assume that f(x) is a linear function on Ik. In this case
f(x) can be written as

f(x) =
1 − ξ

2
f(xk) +

1 + ξ

2
f(xk+1) = f(xk)N1(ξ) + f(xk+1)N2(ξ)

and, assuming that the hierarchic shape functions defined in Section 2.5.2 are
used,

r
(k)
1 =f(xk)

ℓk
2

∫ +1

−1

N2
1 dξ + f(xk+1)

ℓk
2

∫ +1

−1

N1N2 dξ =
ℓk
6

(2f(xk) + f(xk+1))

r
(k)
2 =f(xk)

ℓk
2

∫ +1

−1

N1N2 dξ + f(xk+1)
ℓk
2

∫ +1

−1

N2
2 dξ =

ℓk
6

(f(xk) + 2f(xk+1))

r
(k)
3 =f(xk)

ℓk
2

∫ +1

−1

N1N3 dξ + f(xk+1)
ℓk
2

∫ +1

−1

N2N3 dξ

= − ℓk
6

√

3

2
(f(xk) + f(xk+1)) .

Exercise 2.5.7 Assume that f(x) is a linear function on Ik and the hierarchic

shape functions defined in Section 2.5.2 are used. Compute r
(k)
4 and show that

r
(k)
i = 0 for i > 4. Hint: Make use of eq. (2.64).

Exercise 2.5.8 Let

f(x) = fk sin
x− xk

ℓk
π x ∈ Ik

where fk is a constant. Compute r
(k)
5 numerically in terms of fk and ℓk using

3, 4 and 5 Gauss points. See Appendix B. Use the hierarchic basis functions
defined in Section 2.5.2.

Exercise 2.5.9 Assume that f(x) is a linear function on I and the Lagrange

shape functions defined in Section 2.5.2 for p = 2 are used, compute r
(k)
1 .
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Loading by a concentrated force

A concentrated force F0 acting on an elastic bar at x = x0 is understood as a
surface loading T (x) defined by

T (x) =







0 if 0 < x < x0 − ∆x/2

F0/∆x if x0 − ∆x/2 ≤ x ≤ x0 + ∆x/2

0 if x0 + ∆x/2 < x < ℓ

where ∆x→ 0. In the following we make use of the result, obtained in Section
2.6.4, that in one dimension if v ∈ E(I) then v is a continuous function. Writing

∫ ℓ

0

T (x)v dx =

∫ x0+∆x/2

x0−∆x/2

F0

∆x
v dx

and since v ∈ E(I) is continuous (see proof in Section 2.6.4), we have:

lim
∆x→0

∫ x0+∆x/2

x0−∆x/2

F0

∆x
v dx = F0v(x0). (2.77)

The computation of the right hand side terms corresponding to a concentrated
force F0 involves identification of the element Ik in which x0 lies. It is then
necessary find ξ0 = Q−1

k (x0) and compute

r
(k)
i = F0Ni(ξ0) i = 1, 2, . . . , pk + 1. (2.78)

If x0 is a node point then either element sharing that node point may be chosen.
The reason for this is discussed in Section 2.5.6.

Thermal loading

When an elastic bar is subjected to a temperature change T∆ := T − T0 then
F (v) includes the term

∫ ℓ

0

AEαT∆
dv

dx
dx =

M(∆)
∑

k=1

∫ xk+1

xk

AEαT∆
dv

dx
dx.

On the kth element:

∫ xk+1

xk

AEαT∆
dv

dx
dx =

∫ +1

−1

AEαT∆
dv

dξ
dξ =

pk+1
∑

i=1

bir̄
(k)
i

where

r̄
(k)
i :=

∫ +1

−1

AEαT∆
︸ ︷︷ ︸

x→Qk(ξ)

dNi

dξ
dξ, i = 1, 2, . . . , pk + 1

is the element-level right hand side vector corresponding to the temperature
change.
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Remark 2.5.3 When AEαT∆ = τk is constant on Ik and the hierarchic basis
functions defined in Section 2.5.2 are used then r̄

(k)
1 = −τk, r̄

(k)
2 = τk and

r̄
(k)
i = 0 for i ≥ 3.

Example 2.5.4 Assuming that AEαT∆ = τ is a linear function on Ik and the
hierarchic basis functions defined in Section 2.5.2 are used then

r̄
(k)
1 =

∫ +1

−1

(
1 − ξ

2
τ(xk) +

1 + ξ

2
τ(xk+1)

)(

−1

2

)

dξ = −1

2
(τ(xk) + τ(xk+1)).

Exercise 2.5.10 Assuming that AEαT∆ = τ is a linear function on Ik and the

hierarchic basis functions defined in Section 2.5.2 are used, determine r̄
(k)
3 .

2.5.6 Assembly

The bilinear form was computed element by element, resulting in the expressions
shown in eq. (2.68), (2.71). These element-level expressions must be summed
to obtain the coefficient matrix for the entire problem:

B(un, vn) =

M(∆)
∑

k=1

{bk}T
(

[K(k)] + [M (k)]
)

{ak}.

Similarly, the linear functional was computed element by element, resulting in
the expressions shown in eq. (2.75), which may be augmented by the terms cor-
responding to concentrated forces applied at nodes, thermal loads, and essential
boundary conditions, the treatment of which is discussed in Section 2.5.7.

F (vn) =

M(∆)
∑

k=1

{bk}T{r(k)}.

The indicated summations are performed in the assembly process.
Prior to the summation a unique identifying number must be assigned to

each basis function and the corresponding coefficients. At the element level
the shape functions and their coefficients are numbered from 1 to pk+1. At
the domain level the basis functions and their coefficients are numbered from 1
to n, where n is the dimension of the finite element space S(I,∆,p,Q). The
numbering of the basis functions at the domain level is arbitrary, however the
numbering influences the structure of the assembled coefficient matrix.

Since the basis functions must be continuous on the domain I, the re-
numbering must be consistent with the requirement of continuity. Typically
the basis functions associated with nodes (i.e., the basis functions which are
non-zero at the nodes) are numbered first. The node number is assigned to the
basis function. For example, as shown in Fig. 2.9, node k is shared by element
Ik−1 and element Ik. The variable ϕk(x) is comprised of two linear segments.
One of the segments is mapped from the shape function N2, the other from the
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Figure 2.9: Typical nodal basis function.

shape function N1:

ϕk(x) =

{

N2(Q
−1
k−1(x)) for x ∈ Ik−1

N1(Q
−1
k (x)) for x ∈ Ik.

Therefore the local (i.e., element-level) variables a2, b2 associated with element
Ik−1 and the local variables a1, b1 associated with element Ik must be assigned
the same ‘global’ number k. The basis functions mapped from the internal shape
functions are zero in the node points, hence automatically satisfy the continuity
condition on I.

The numbering of the basis functions is arbitrary, however, the numbering
scheme influences the structure of the coefficient matrix and hence, depending
on the choice of the solver, may affect the solution time. This point is discussed
further in Section 2.5.8.

Example 2.5.5 Consider the 3-element mesh shown in Fig. 2.5. The p-distrib-
ution is {2, 1, 3}. The basis functions, mapped from the hierarchic shape func-
tions, are illustrated in Fig. 2.5. Note that the basis functions are numbered first
by nodes then by p-level. Assigning the global numbering to the coefficients ai,
bi, i = 1, 2, . . . , 7, but retaining the local numbering for the stiffness coefficients,
with the element numbers indicated by superscripts, we have:

B(un, vn) ={b1 b2 b5}






c
(1)
11 c

(1)
12 c

(1)
13

c
(1)
21 c

(1)
22 c

(1)
23

c
(1)
31 c

(1)
32 c

(1)
33












a1

a2

a5






+

{b2 b3}
[

c
(2)
11 c

(2)
12

c
(2)
21 c

(2)
22

]{
a2

a3

}

+

{b3 b4 b6 b7}








c
(3)
11 c

(3)
12 c

(3)
13 c

(3)
14

c
(3)
21 c

(3)
22 c

(3)
23 c

(3)
24

c
(3)
31 c

(3)
32 c

(3)
33 c

(3)
34

c
(3)
41 c

(3)
42 c

(3)
43 c

(3)
44














a3

a4

a6

a7







where c
(k)
ij := k

(k)
ij +m

(k)
ij . Of course, the element-level matrices are symmetric.

The full matrices are displayed for purposes of clarity only. The 7×7 coefficient
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matrix is obtained by performing the summation:

B(un, vn) =

7∑

j=1

7∑

i=1

cijajbi = {b1 b2 · · · b7}








c11 c12 · · · c17
c21 c22 c27
...

...
c71 c72 · · · c77














a1

a2

...
a7







≡{b}T [C]{a}

where (for example) c11 = c
(1)
11 , c22 = c

(1)
22 + c

(2)
11 , c36 = c

(3)
13 , etc. The matrix [C]

is called the unconstrained coefficient matrix or unconstrained global stiffness
matrix. This matrix needs to be modified in order to account for the restrictions
associated with the essential boundary conditions. This point will be discussed
in Section 2.5.7.

The assembly of the right-hand side vector from the element-level right-hand
side vectors is analogous to the procedure just described:

F (vn) ={b1 b2 b5}







r
(1)
1

r
(1)
2

r
(1)
3







+ {b2 b3}
{

r
(2)
1

r
(2)
2

}

+ {b3 b4 b6 b7}







r
(3)
1

r
(3)
2

r
(3)
3

r
(3)
4







={b1 b2 · · · b7}







r1
r2
...
r7







where (for example) r2 = r
(1)
2 + r

(2)
1 .

Exercise 2.5.11 Assume that κ(x) = κk is constant on each of the three ele-
ments shown in Fig. 2.5 and c(x) = 0 and hierarchic shape functions are used.
Write down the assembled coefficient matrix in terms of κk, ℓk. Let p = {2 1 3}.

Exercise 2.5.12 Let

f(x) =







C1 + C2x for x ∈ I1

C3 for x ∈ I2

0 for x ∈ I3

where C1, C2, C3 are constants. Using the basis functions defined in Example
2.5.5, determine elements r2 and r3 of the assembled right hand side vector.

Exercise 2.5.13 If a concentrated force is acting on a node point then either
element sharing that node point may be chosen for computing the element-level
right hand side vector (load vector). Explain why.
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Exercise 2.5.14 The elastic bar shown in Fig. 2.10 consists of a tapered and a
prismatic section. The cross-sectional area of the tapered section varies linearly
from Aa to Ab. The modulus of elasticity E and the spring coefficient c are
constants. The boundary conditions are: Fa = Fc = 0. Let Tb(x) = Tb constant.
Using two elements and p = 1 on both elements, write down each term of the

Figure 2.10: Elastic bar. Notation.

assembled coefficient matrix and load vector for this problem.

2.5.7 Treatment of the essential boundary conditions

When essential boundary conditions are specified then it is necessary to modify
the assembled coefficient matrix [C] and the right hand side vector {r} using the
procedure described in Section 2.3.2. For example, when using the hierarchic
shape functions, we select u⋆ as follows:

u⋆ =







û0N1(Q
−1
1 (x)) for x ∈ I1

ûℓN2(Q
−1
M (x)) for x ∈ IM

0 elsewhere

where M = M(∆) is the number of elements. Such a choice is illustrated in
Fig. 2.11.

Figure 2.11: Typical choice of the function u⋆ in one dimension.
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It is necessary to compute the integral
∫ ℓ

0

(κ(x)(u⋆)′v′ + c(x)u⋆v) dx =

û0

∫ x2

x1

(
κ(x)N ′

1(Q
−1
1 (x))v′ + c(x)N1(Q

−1
1 (x))v

)
dx+

ûℓ

∫ xn+1

xn

(
κ(x)N ′

2(Q
−1
M (x))v′ + c(x)N2(Q

−1
M (x))v

)
dx.

Noting that

∫ x2

x1

κ(x)(u⋆)′v′ dx =û0
2

ℓ1

∫ +1

−1

κ(Q1(ξ))
dN1

dξ

p1+1
∑

i=1

b
(1)
i

dNi

dξ
dξ

=û0

p1+1
∑

i=1

k
(1)
i1 b

(1)
i

and, upon treating the other terms similarly, we have:

∫ ℓ

0

(κ(x)(u⋆)′v′ + c(x)u⋆v) dx =û0

p1+1
∑

i=1

(

k
(1)
i1 +m

(1)
i1

)

b
(1)
i +

ûℓ

pM+1
∑

i=1

(

k
(M)
i2 +m

(M)
i2

)

b
(M)
i .

These expressions represent the first columns of the stiffness and Gram matrices
of element 1 multiplied by û0 and the second columns of the stiffness and Gram
matrices of element M multiplied by ûℓ. Therefore enforcement of non-zero
essential boundary conditions involves multiplication of the first columns of the
stiffness and Gram matrices of element 1 (resp. element M(∆)) by û0 (resp. ûℓ)
and subtracting these columns from the right hand side vector. Furthermore,

since b
(1)
1 = b

(M)
2 = 0, the corresponding rows in the assembled coefficient matrix

and right hand side vector are deleted. Therefore the number of equations is
reduced by the number of essential boundary conditions specified. The number
of equations following enforcement of the essential boundary conditions is the
number of degrees of freedom N .

Example 2.5.6 Let us consider the following problem on I = (0, 2):

−u′′ + 12u = 0 u(0) = 1.25, u(2) = 5.50 (2.79)

and let us use a uniform mesh with 4 elements, p = {1 1 1 1}. Using eq. (2.69)
and (2.72) the unconstrained coefficient matrix [C] is readily assembled:

[C] =









4 −1 0 0 0
−1 8 −1 0 0
0 −1 8 −1 0
0 0 −1 8 −1
0 0 0 −1 4









·
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Multiplying the first column by a1 = 1.25, the fifth column by a5 = 5.50 and
subtracting these columns from the right hand side vector (which is the zero
vector in this case), we have:





8 −1 0
−1 8 −1
0 −1 8











a2

a3

a4






=







1.25
0

5.50






·

The number of degrees of freedom is 3. On solving we find a2 = 0.169859,
a3 = 0.108871, a4 = 0.701109.

Exercise 2.5.15 Using one element, p = 4 and hierarchic basis functions, write
down the system of equations following enforcement of the essential boundary
conditions for the problem in Example 2.5.6.

Example 2.5.7 Let us consider the problem on (0, ℓ):

−κ0u
′′ = f(x), κ0u

′(0) = F0, κ0u
′(ℓ) = Fℓ

where κ0 is a constant. Using one element of degree p and the linear mapping
given by eq. (2.56), the system of equations is

κ0

ℓ










1 −1 0 . . . 0
−1 1 0 . . . 0

0 0 2 . . . 0
...

. . .

0 . . . 2
















a1

a2

a3

...
ap+1







=







r1
r2
r3
...

rp+1







where the coefficient matrix is from eq. (2.69) and the right-hand side vector is
from equations(2.76) and (2.78):

r1 =
ℓ

2

∫ +1

−1

f(Q(ξ))N1(ξ) dξ − F0

r2 =
ℓ

2

∫ +1

−1

f(Q(ξ))N2(ξ) dξ + Fℓ

ri =
ℓ

2

∫ +1

−1

f(Q(ξ))Ni(ξ) dξ, i = 3, 4, . . . , p+ 1.

Observe that the second row is −1 times the first row, hence the coefficient
matrix is singular. Therefore this problem does not have a unique solution and
solutions exist only if the equations are consistent. On adding the first and
second rows we have:

r1 + r2 =
ℓ

2

∫ +1

−1

f(Q(ξ)) (N1(ξ) +N2(ξ))
︸ ︷︷ ︸

=1

dξ − F0 + Fℓ = 0
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which is equivalent to
∫ ℓ

0

f(x) dx − F0 + Fℓ = 0. (2.80)

This is a re-statement of eq. (2.46). In solving such problems we assign an
arbitrary value to a1 or a2. The treatment of the problem is then similar to
that discussed in Example 2.5.6.

2.5.8 Solution

Following assembly of the coefficient matrix and enforcement of the essential
boundary conditions (when applicable) the system of simultaneous equations is
solved by one of several methods designed to exploit the symmetry and sparsity
of the coefficient matrix. The solvers are classified into two main categories;
direct and iterative solvers. The choice of solver in a particular application is
influenced by the size of the problem and the available computational resources.
Generally speaking, for small problems (a few thousand degrees of freedom)
either direct or iterative solvers may be used. In most finite element analysis
problems the memory requirements for direct solvers rapidly increase with the
size of the problem therefore for large problems (more than 100,000 degrees of
freedom) iterative solvers are used. For problems of intermediate size the choice
of the solver depends on the rate of convergence of the iteration process and
the number of right-hand side vectors. Discussion of the various solvers used in
FEA is beyond the scope of this introductory exposition. We refer to standard
texts, such as [19] and [24].

When a direct solver is used then the numbering of the basis functions should
be optimized so that the solver can exploit the sparsity of the coefficient ma-
trix. Commercial finite element codes offer a variety of solvers and optimization
schemes for numbering the basis functions or the elements, depending on the
choice of the solver.

The solver produces the N unknown coefficients of the basis functions. The
finite element solution is then

uFE = ū+ u⋆ =
N+N⋆

∑

i=1

aiϕi(x)

where N⋆ is the number of coefficients determined by the essential boundary
conditions. If no essential boundary conditions were specified then N⋆ = 0.
For instance, in Example 2.5.6 N = 3, N⋆ = 2. The exact and finite element
solutions are shown in Fig. 2.12.

In the assembly process the element-level numbering scheme, ranging from
1 to pk +1, was replaced by the global numbering scheme. This is now reversed

and the element-level coefficients a
(k)
i are stored with the topological data and

other information, such as material properties, for each element. At the end of
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Figure 2.12: The exact and finite element solutions for Example 2.5.6.

the solution process the finite element solution is available in the form

uFE =

pk+1
∑

i=1

a
(k)
i Ni(ξ) k = 1, 2, . . . ,M(∆). (2.81)

The array of coefficients in eq. (2.81), the corresponding shape functions and
the mapping functions contain all information generated by a finite element
solution.

2.5.9 Post-solution operations

The data of interest are typically functionals that depend on u and u′. These
are computed from the finite element solution in the post-solution operations.

Computation of uF E(x0)

The computation of uFE at some arbitrary point x0 involves a search to identify
the element Ik in which point x0 lies and, using the inverse map given by
eq. (2.57), identification of the point ξ0 ∈ Ist corresponding to x0. Then uFE(x0)
is computed from

uFE(x0) =

pk+1
∑

i=1

a
(k)
i Ni(ξ0).

Direct computation of u
′

F E
(x0)

In many applications the first derivative of the solution is of interest. The first
derivatives are computed from:

(
duFE

dx

)

x=x0

=
2

ℓk

pk+1
∑

i=1

a
(k)
i

(
dNi

dξ

)

ξ=ξ0

· (2.82)

Computation of the higher derivatives is analogous.
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Indirect computation of u
′

FE
(x0) in node points

The first derivative in node points is usually determined indirectly from the
generalized formulation given by eq. (2.33). For example, to compute the first
derivative at node xk from the finite element solution computed for element k
we select v = N1(ξ) and use eq. (2.33):
∫ xk+1

xk

(κu′FEv
′ + cuFEv) dx =

∫ xk+1

xk

fv dx+ [κu′FEv]x=xk+1
− [κu′FEv]x=xk

.

(2.83)
Test functions used in post-solution operations for the computation of a par-
ticular functional are called extraction functions. Here v = N1(Q

−1
k (x)) is an

extraction function for the functional − [κu′FE]x=xk
. This is because v(xk) = 1

and v(xk+1) = 0 and hence

− [κu′FE ]x=xk
=

∫ xk+1

xk

(κu′FEv
′ + cuFEv) dx−

∫ xk+1

xk

fv dx

=

pk+1
∑

j=1

c
(k)
1j a

(k)
j − r

(k)
1 . (2.84)

This result shows that the first derivative at node xk can be computed from the
element-level coefficient matrix and the right-hand side vector.

Example 2.5.8 For the problem solved in Example 2.5.6 let us compute (a) the
exact value of u′(0); (b) u′FE(0) from eq. (2.82), and (c) u′FE(0) from eq. (2.84)
using v = N1(ξ).
The exact solution of eq. (2.79) is:

uEX = 1.25 cosh
√

12x+
5.50 − 1.25 cosh

√
48

sinh
√

48
sinh

√
12x. (2.85)

Therefore:

u′EX(0) =
√

12
5.50 − 1.25 cosh

√
48

sinh
√

48
= −4.292801.

Using the direct method of eq. (2.82) and the results from Example 2.5.6,

u′FE(0) = 2.00(−a(1)
1 + a

(1)
2 ) = 2.00(−1.25 + 0.169859) = −2.160282.

The relative error is 49.7 %. Using the indirect method of eq. (2.84) and the
results from Example 2.5.6,

[−u′FE]x=0 = 4a1 − a2 = 4 × 1.25 − 0.169859 = 4.830141

we have u′FE(0) = −4.830141 (12.5 % error).
This example illustrates that it is much more efficient to compute the deriva-

tives by the indirect method than by the direct method. For further details refer
to Section 2.8.
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Exercise 2.5.16 Compute u′FE(2) for Example 2.5.6 using the direct method
given by eq. (2.82) and the indirect method. Compute the relative errors.

Exercise 2.5.17 Two elastic bars of length ℓ are constrained at the ends A and
B and supported by a distributed spring characterized by the spring coefficient c
(constant). Assume that the cross sectional area A, the modulus of elasticity E
and the coefficient of thermal expansion α are constants. The bars are separated
by a gap ∆ at a reference temperature T0 (constant). The temperature of both
bars is uniformly increased. The goal of computation is to determine the reaction
forces developed at the supports A and B as a function of the temperature
T > T0.

Figure 2.13: Exercise 2.5.17. Notation.

(a) Explain how you would determine the temperature Tc at which the gap
closes. (b) Assuming that T ≤ Tc, explain how you would compute the reaction
force at A by the direct and indirect methods. (c) Assuming that T > Tc,
explain how you would compute the reaction force atA by the direct and indirect
methods.

Exercise 2.5.18 Write an ad hoc computer program for solving the problem in
Example 2.5.6 for an arbitrary number of elements. Plot the relative errors for
u′FE(2) computed by (a) the direct method and (b) the indirect method versus
the number of elements. Compare the number of elements needed for reducing
the relative error to under 1 %.

Nodal forces

In the finite element method the term − [κu′FE]x=xk
(resp. [κu′FE]x=xk+1

) is

interpreted as a ‘nodal force’ F
(k)
1 acting on node 1 (resp. F

(k)
2 acting on node

2) of element k as shown in Fig. 2.14.
Note that the convention for nodal forces is different from the convention

for the bar force: Whereas the bar force is positive when tensile, a nodal force
is positive when acting in the direction of the positive x axis.

Figure 2.14: Convention for nodal forces.
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Exercise 2.5.19 Show that when c(x) = 0 on Ik then F
(k)
1 + F

(k)
2 = 0.

Exercise 2.5.20 Show that the sum of nodal forces computed for node k from
element k − 1 and from element k is zero unless a concentrated force Fk is
acting on node k, in which case the sum is equal to Fk. Illustrate this by a
simple example and demonstrate that the sum of forces acting on a node point
is zero. Hint: Let v = ϕk(x) shown in Fig. 2.9.

Remark 2.5.4 We have seen in Theorem 2.4.2 that the error in energy norm
depends on the choice of the finite element space S, which depends on the choice
of discretization characterized by the mesh ∆, the polynomial degrees assigned
to the elements p and the mapping functions Q. Of course, this is true for all
data computed from the finite element solution. It was noted in Section 1.1.4
that it is necessary to verify that the data of interest are substantially indepen-
dent of the discretization. It is of great practical importance to ensure that the
relative errors in the data of interest are within acceptable bounds. Procedures
for error estimation are discussed in Section 2.7.

Remark 2.5.5 Let us consider the problem of eq. (2.21) with and c = 0 and
κ(x) = κk constant on Ik. Let us assume that the mapping is linear and u(0) =
û0 is one of the boundary conditions. In this case the finite element solution
in the node points is the exact solution. To show this we define ϕk(x) ∈ S0 as
follows:

ϕ1(x) =1 − x

ℓ1
for 0 ≤ x < x2 = ℓ1

ϕM(∆)+1(x) =1 − x− xM(∆)

ℓM(∆)
for xM(∆) ≤ x ≤ xM(∆)+1 = ℓ

and for k = 2, 3, . . . ,M(∆)

ϕk(x) =

{

(x− xk−1)/ℓk−1 for xk−1 ≤ x ≤ xk

1 − (x− xk)/ℓk for xk < x ≤ xk+1.

Using the Galerkin orthogonality we have:

B(e, ϕ1) = − κ1

ℓ1

∫ x2

x1

e′ dx = 0

B(e, ϕk) =
κk−1

ℓk−1

∫ xk

xk−1

e′ dx− κk

ℓk

∫ xk+1

xk

e′ dx = 0, k = 2, . . . ,M(∆)

B(e, ϕM(∆)+1) =
κM(∆)

ℓM(∆)

∫ xM(∆)+1

xM(∆)

e′ dx = 0

where e := uEX − uFE . Therefore we have the system of M(∆) + 1 equations,
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the coefficient matrix of which is tridiagonal:

κ1

ℓ1
e(x1) −

κ1

ℓ1
e(x2) = 0

...

−κk−1

ℓk−1
e(xk−1) +

(
κk−1

ℓk−1
+
κk

ℓk

)

e(xk) − κk

ℓk
e(xk+1) = 0

...

−κM(∆)

ℓM(∆)
e(xM(∆)) +

κM(∆)

ℓM(∆)
e(xM(∆)+1) = 0.

We have assumed that an essential boundary condition is prescribed at x = 0
(node 1). Then e(x1) = 0 and hence e(xk) = 0 for k = 1, 2, . . . ,M(∆) + 1.
Alternatively when an essential boundary condition is prescribed at x = ℓ (node
M(∆)+1) then e(xM(∆)+1) = 0 and hence e(xk) = 0 for k = 1, 2, . . . ,M(∆)+1.

Exercise 2.5.21 Show that under the assumptions of Remark 2.5.5 uFE(xk) =
uEX(xk) when natural boundary conditions are prescribed.

Exercise 2.5.22 Consider the problem −u′′ = α(α − 1)xα−2, α > 1, on I =
(0, 1) with the boundary conditions u(0) = u(1) = 0. The goal is to estimate
u′(0) using the finite element method within an error tolerance of 1%. Let
α = 1.05. Using a uniform finite element mesh and p = 1, what is the number
of elements M(∆) needed when (a) u′(0) is computed by the direct method and
(b) u′(0) is computed by the nodal force method? Hint: Make use of the fact
that uFE(xk) = uEX(xk) for k = 1, 2, . . . ,M(∆) + 1, see Remark 2.5.5.

2.6 Properties of the generalized formulation

Some of the key properties of the generalized formulation and the finite ele-
ment solution are presented in the following. Although these properties are
presented in the one-dimensional setting only, they are applicable to two and
three dimensions as well, unless noted otherwise.

2.6.1 Uniqueness

The model problem given by eq. (2.21) has been replaced by the corresponding
generalized formulation. The following theorem establishes that the solution of
the generalized formulation is unique.

Theorem 2.6.1 The function u ∈ Ẽ(I) that satisfies B(u, v) = F (v) for all
v ∈ E0(I) is unique in the space E(I).
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The theorem is proven by contradiction: Assume that there are two functions
u1, u2 in Ẽ(I), u1 6= u2 that satisfy

B(u1, v) = F (v)

B(u2, v) = F (v)

for all v ∈ E0(I). Subtracting the second equation from the first we have

B(u1 − u2, v) = 0 for all v ∈ E0(I).

Since (u1 − u2) ∈ E0(I), we may select v = u1 − u2 in which case B(u1 −
u2, u1−u2) = 0. In view of eq. (2.49) this is equivalent to ‖u1−u2‖E = 0 which
contradicts the assumption that u1 6= u2 in Ẽ(I). �

Remark 2.6.1 Note that uniqueness is understood in the space E(I). Suppose
that c = 0 in eq. (2.21) and Neumann boundary conditions are specified, subject
to eq. (2.46). Then if u1 is a solution then u2 := u1 +C is also a solution, where
C is an arbitrary constant. In this case the energy norm cannot distinguish
between two functions that differ by an arbitrary constant. This is seen directly
from the definition of the energy norm, given by eq. (2.49):

‖u1 − u2‖2
E =

1

2

∫ ℓ

0

(u′1 − u′2)
2 dx = 0.

Therefore the solution can be determined only up to an arbitrary constant15. In
mechanics this has a simple physical interpretation: The constant C represents
rigid body displacement.

2.6.2 Potential energy

An important property of the generalized formulation is that the solution mini-
mizes a quadratic functional, called the potential energy. This is proven by the
following theorem.

Theorem 2.6.2 The function u ∈ Ẽ(I) that satisfies B(u, v) = F (v) for all
v ∈ E0(I) minimizes the quadratic functional π(u), called the potential energy;

π(u) :=
1

2
B(u, u) − F (u) (2.86)

on the space Ẽ(I).
Proof: For any v ∈ E0(I), ‖v‖E 6= 0 we have:

π(u + v) =
1

2
B(u+ v, u+ v) − F (u+ v)

=
1

2
B(u, u) +B(u, v) +

1

2
B(v, v) − F (u) − F (v)

=π(u) +B(u, v) − F (v)
︸ ︷︷ ︸

0

+
1

2
B(v, v)
︸ ︷︷ ︸

>0

.

15Such a norm is called a “seminorm”.
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Therefore any admissible nonzero perturbation of u will increase π(u). �

This theorem is known as the principle of minimum potential energy.

Remark 2.6.2 Whereas the strain energy is always positive, the potential en-
ergy may be positive, negative or zero.

2.6.3 Error in energy norm

The relationship between the error in energy norm and the error in potential
energy is established by the following theorem. One of the methods used for
estimating the error e = uEX − uFE in energy norm is based on this theorem.

Theorem 2.6.3

‖uEX − uFE‖2
E = π(uFE) − π(uEX). (2.87)

Proof: Writing e = uEX − uFE and noting that e ∈ E0(I), we have:

π(uFE) =π(uEX − e) =
1

2
B(uEX − e, uEX − e) − F (uEX − e)

=
1

2
B(uEX , uEX) − F (uEX)−B(uEX , e) + F (e)

︸ ︷︷ ︸

0

+
1

2
B(e, e)

=π(uEX) + ‖e‖2
E

which is the same as eq. (2.87). �

2.6.4 Continuity

By definition, u(x) is continuous on Ī := {0 ≤ x ≤ ℓ} if for any ǫ > 0 we can
find a δ(ǫ) such that

|u(x2) − u(x1)| ≤ ǫ if |x2 − x1| < δ(ǫ), x1, x2 ∈ Ī . (2.88)

Figure 2.15: Notation.
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First we show by an example that a discontinuous function cannot lie in the
energy space. Specifically, let us consider the continuous function u(x) shown
in Fig. 2.15 and compute the integral

∫ ℓ

0

(u′)2 dx =

∫ x0+∆x

x0

(
c2 − c1

∆x

)2

dx =
(c2 − c1)

2

∆x
·

At ∆x = 0 the function becomes discontinuous and the value of the integral is
infinity.

With one qualification, any function u(x) ∈ E(I) is continuous and bounded
on Ī by the energy norm ‖u‖E. The qualification is that when c(x) = 0 and
Neumann boundary conditions are specified, subject to eq. (2.46), then u = C is
a solution (where C is an arbitrary constant) hence u(x) is not bounded by the
energy norm. See Remark 2.6.1. The statement that u(x) ∈ E(I) is bounded on
Ī by ‖u‖E is understood to mean that there exists a constant C, independent
of u(x), such that for any x ∈ Ī the following inequality holds: |u| ≤ C‖u‖E.

We now prove continuity for the case κ = 1, c = 0. Let us assume that
x2 ≥ x1. Then:

u(x2) − u(x1) =

∫ x2

x1

u′(x)dx (2.89)

where the prime (′) represents differentiation with respect to x. Applying the
Schwarz inequality (see Appendix A, Section A.8) we have:

|u(x2)−u(x1)| ≤
(∫ x2

x1

dx

)1/2(∫ x2

x1

(u′(x))
2
dx

)1/2

= |x2−x1|1/2
√

2 ‖u‖E.

(2.90)
Therefore if we select δ(ǫ) < ǫ2/2 ‖u‖2

E then the condition of continuity is sat-
isfied. That u(x) is bounded on Ī by ‖u‖E follows directly from (2.90) for the
case u(x1) = 0. This theorem holds in one dimension only.

Remark 2.6.3 Whereas all functions u ∈ E(I) are continuous and bounded,
du/dx has to be neither continuous nor bounded. For this reason Neumann
boundary conditions cannot be enforced by restriction.

Exercise 2.6.1 Consider functions of the form u(x) = xα on the interval 0 <
x < ℓ. Show that u is in the energy space only if α > 1/2.

2.6.5 Convergence in energy norm

In the example discussed in Section 2.2 the basis functions were selected to be
polynomials that satisfied the homogeneous essential boundary conditions. The
tacit assumption was that in some sense un → u as n → ∞. Convergence in a
normed linear space X is understood to mean that for any ǫ > 0 there is an n,
dependent on ǫ, such that ‖u− un‖X < ǫ.

In the following we assume that u′′(x) is continuous and ‖u′′(x)‖max ≤ C <
∞ on Ī := [0, ℓ]. Let us partition Ī into n segments and denote the kth node
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point by xk. Let us interpolate u(x) by a piecewise linear function ūn(x) such
that ūn(xk) = u(xk). An example where n = 4 is shown in Fig. 2.16a. On the
kth sub-interval Ik := (xk, xk+1) we have:

ūn =
x− xk

hk
u(xk+1) −

x− xk+1

hk
u(xk) x ∈ Ik k = 1, 2, . . . , n

where hk := xk+1 − xk is the length of the kth element. The maximum value
of hk will be denoted by h.

Figure 2.16: Linear interpolation. Notation.

We first show that

‖u− ūn‖max ≤ h2

8
‖u′′‖max. (2.91)

To prove this inequality, we consider the error on the kth sub-interval, shown
in Fig. 2.16b. Since ēk(x) := u(x) − ūn(x) for x ∈ Ik, ēk(x) vanishes at the
endpoints of the sub-interval Ik. Furthermore, by assumption u′′ is continuous
on Ik, therefore there is a point x̄k where |ēk| is maximum and ē′k(xk) = 0. We
expand ēk about this point into a Taylor series. Let us assume that xk+1− x̄k ≤
hk/2 and write

ēk(xk+1) = 0 = ēk(x̄k) + ē′k(x̄k)
︸ ︷︷ ︸

0

(xk+1 − x̄k) +
1

2
ē′′k(ξk)(xk+1 − x̄k)2 ξ ∈ Ik

where the last term is the error term of the Taylor expansion. From this rela-
tionship we have:

max
x∈Ik

|ēk(x)| = |ēk(x̄k)| =
1

2
|ē′′k(ξk)|(xk+1 − x̄k)2 ξk ∈ Ik.

Since ū′′n = 0 we have ē′′k = u′′. Also, since xk+1 − x̄k ≤ hk/2 we have:

max
x∈Ik

|ēk| ≤
h2

k

8
‖u′′‖max k = 1, 2, . . . , n.
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If xk+1 − x̄k > hk/2 then we express ēk(xk) and obtain the same result. On
replacing hk with h, eq. (2.91) follows directly from this result.

The estimate for ‖ē′k‖L2(Ik) is obtained from the Taylor expansion of ē′k(x)
at x = x̄k:

ē′k(x) = ē′k(x̄k)
︸ ︷︷ ︸

0

+ē′′k(ξk)(x − x̄k) = u′′(ξk)(x − x̄k).

Therefore:
|ē′k| ≤ ‖u′′‖max|x− xk|

and ∫ xk+1

xk

(ē′k)2 dx ≤ ‖u′′‖2
max

∫ xk+1

xk

(x − xk)2 dx = ‖u′′‖2
max

h3
k

3
·

On the entire domain:

∫ ℓ

0

(ē′k)2 dx ≤ ‖u′′‖2
max

M(∆)
∑

k=1

h3
k

3
≤ 1

3
h2‖u′′‖2

max

M(∆)
∑

k=1

hk.

Since
∑M(∆)

k=1 hk = ℓ, we have

∫ ℓ

0

(ē′k)2 dx ≡ ‖u′ − ū′n‖2
L2(I) ≤ h2 ℓ

3
‖u′′‖2

max. (2.92)

We are now in a position to obtain an estimate for the error of the interpolant
in the energy norm. By definition,

‖u− ūn‖2
E(I) =

1

2

∫ ℓ

0

(
κ(u′ − ū′n)2 + c(u − ūn)2

)
dx.

Using eq. (2.91) and eq. (2.92), for sufficiently small h we have:

‖u− ūn‖E(I) ≤ Ch‖u′′‖max

where C is a constant that depends on κ, c, ℓ but is independent of h and u.
Theorem 2.4.2 (see p. 41) states that the finite element solution minimizes

the error in energy norm on the space S̃(I). Therefore ‖u − un‖E(I) ≤ ‖u −
ūn‖E(I) and

‖u− un‖E(I) ≤ Ch‖u′′‖max. (2.93)

Error estimates of this type are called a priori estimates16. This estimate shows
that the finite element solution converges to the exact solution in energy norm
given the assumption that u′′ is continuous and bounded on Ī. It also shows
how fast the error in energy norm decreases as the mesh is refined so that
the size of the largest element h approaches zero. This estimate holds for all

16A priori estimates are obtained through deductive reasoning, based on certain character-
istics of a problem class. In this instance the problem class is characterized by u′′(x) being
continuous and bounded on Ī.
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h, and for sufficiently small h the inequality (2.93) becomes an approximate
equality. Convergence can be proven for any u ∈ E(I) see, for example, [49].
A brief overview of priori estimates for two and three dimensional problems is
presented in Section 6.4.

Remark 2.6.4 It is possible to prove convergence of the finite element solution
in other norms, such as ‖u′ − u′n‖max and ‖u′ − u′n‖L2(I) but this is beyond the
scope of this book.

Exercise 2.6.2 The estimate (2.93) was derived for linear shape functions. Ob-
tain an analogous estimate for quadratic shape functions under the assumption
that |u′′′(x)| ≤ C <∞.

Exercise 2.6.3 Repeat Exercise 2.6.2 assuming that |u′′(x)| ≤ C < ∞ but
|u′′′(x)| can be arbitrarily large.

2.7 Error estimation based on extrapolation

Computed values of the potential energy corresponding to a hierarchic sequence
of finite element spaces can be used for estimating the error in energy norm by
extrapolation. By Theorem 2.6.3 we have;

‖uEX − uFE‖2
E = π(uFE) − π(uEX). (2.94)

In Section 6.4 it will be shown that for a large and important class of problems
the error in energy norm is proportional to N−β when N is sufficiently large:

‖uEX − uFE‖E ≈ k

Nβ
(2.95)

where k is some positive constant. An error estimate can be based on this
relationship. Using eq. (2.94) we have:

π(uFE) − π(uEX) ≈ k2

N2β
· (2.96)

There are three unknowns: π(uEX), k and β. Assume that we have a sequence of
solutions corresponding to Sp−2 ⊂ Sp−1 ⊂ Sp. Let us denote the corresponding
potential energy values by πp−2, πp−1, πp and the degrees of freedom by Np−2,
Np−1, Np. We will denote π := π(uEX). With this notation we have:

πp − π ≈ k2

N2β
p

(2.97)

πp−1 − π ≈ k2

N2β
p−1

· (2.98)

On dividing eq. (2.97) with eq. (2.98), we have

πp − π

πp−1 − π
≈
(
Np−1

Np

)2β

or log
πp − π

πp−1 − π
≈ 2β log

Np−1

Np
·
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Repeating for p− 1 and p− 2, it is possible to eliminate 2β to obtain:

πp − π

πp−1 − π
≈
(
πp−1 − π

πp−2 − π

)Q

where Q := log
Np−1

Np

(

log
Np−2

Np−1

)−1

· (2.99)

This equation can be solved for π to obtain an estimate of the exact value of
the potential energy. With the estimated value of π it is possible to estimate
the relative error in energy norm using eq. (2.94). By definition, the relative
error in energy norm is:

(er)E =
‖uEX − uFE‖E

‖uEX‖E
(2.100)

where ‖uEX‖E is estimated from uFE corresponding to the finite element space
of the largest number of degrees of freedom:

‖uEX‖E ≈
√

1

2
B(uFE , uFE).

The relative error is usually reported as percent error. This estimator has been
tested against a number of problems for which the exact solutions are known. It
was found that the estimator works well for a wide range of problems, including
most problems of practical interest, however it cannot be guaranteed to work
for all problems.

The quality of an estimator is measured by the effectivity index θ, defined
as the estimated error divided by the true error:

θ :=
( ‖uEX − uFE‖E )est.’d
( ‖uEX − uEX‖E )true

· (2.101)

Of course, the effectivity index can be computed only for those problems for
which the exact solution is known. Evaluation of an estimator involves the
solution of a variety of such problems. An estimator is generally considered to
be reliable if 0.8 < θ < 1.2 for most problems.

Remark 2.7.1 Let us divide eq. (2.95) by ‖u
EX

‖E to obtain

‖uEX − uFE‖E

‖u
EX

‖E
= (er)E ≈ k̄

Nβ

where k̄ := k/‖u
EX

‖E . Therefore:

log(er)E ≈ log k̄ − β logN.

Therefore if we plot (er)E vs. N on log-log scale then, if the assumption (2.95)
is correct, then we will see a straight line with the slope −β. The convergence
(2.95) is called algebraic convergence and β is called the rate of convergence.
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2.8 Extraction methods

We have seen in Example 2.5.8 that the indirect method used for computing
u′FE(0) yielded a much smaller error than the direct method. The reasons for
this are discussed in the following.

Let us be interested in computing some functional Q and let us assume that
we can find a function w such that the exact value of Q, denoted by QEX , is:

QEX = B(uEX , w) − F (w). (2.102)

The function w is called extraction function. It does not have to lie in the
energy space, however the indicated operations must be defined. The finite
element approximation of QEX is denoted by QFE :

QFE = B(uFE , w) − F (w). (2.103)

Therefore the error in Q is:

QEX −QFE = B(eu, w) (2.104)

where eu := uEX − uFE . Let gEX be the projection of w onto the test space
E0(I), that is,

B(gEX , v) = B(w, v) for all v ∈ E0(I) (2.105)

and let gFE be the projection of gEX onto the test space S0(I):

B(gFE , v) = B(gEX , v) for all v ∈ S0(I). (2.106)

In view of eq. (2.105) and eq. (2.53) we can write eq. (2.104) as follows:

QEX −QFE = B(eu, gEX) −B(eu, gFE)
︸ ︷︷ ︸

0

(2.107)

where the second term on the right hand side is zero on account of the Galerkin
orthogonality (2.53). Therefore denoting eg := gEX − gFE we have:

QEX −QFE = B(eu, eg). (2.108)

Using the Schwarz inequality (see Section A.8) we have:

|QEX −QFE | = |B(eu, eg)| ≤ 2‖eu‖E(I)‖eg‖E(I). (2.109)

In other words, the error in Q depends on the error of the solution eu and the
error eg. Therefore the finite element space has to be designed such that both
errors are small. Note that gEX does not have to be known, it is of theoretical
importance only.

If ‖eg‖E(I) converges to zero at approximately the same rate as ‖eu‖E(I)

then |QEX − QFE | converges to zero at about the same rate as the error in
strain energy, which is twice the rate of convergence of error in energy norm. A
method of computation for some functional is said to be superconvergent when
the data of interest converge to their limit value at approximately the same rate
as the strain energy.
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Remark 2.8.1 Superconvergent methods of utilize extraction functions func-
tions constructed so as to approximate the appropriate Green’s function in the
neighborhood of the point of extraction. For details we refer to [4].

2.9 Laboratory exercises

The following chapters deal with the finite element method in two and three
dimensions. To perform the exercises, the reader will need to use the finite ele-
ment analysis software product StressCheck17, which is provided with this book,
or some other FEA software product that has h- and p-extension capabilities.

At this point the reader should become acquainted with the key features of
StressCheck. The best way to start is to read the Getting Started Guide, which
can be found under the main menu heading ‘Help’. Chapter 2 of this guide
provides information about the most important features of the user interface.
Chapter 4 is a tutorial that provides information about the preparation of input
data for problems in two- and three-dimensional elasticity, execution of the
solution, and post-processing procedures.

Chapter 3 of the Getting Started Guide provides an overview of Stress-
Check’s Handbook Library. The Handbook Library contains a number of prob-
lems defined in terms of parameters in much the same way as in conventional
engineering handbooks. The principal difference is that here the solutions are
obtained by the finite element method. This allows problems of a far greater
complexity and variety to be formulated in terms of parameters. The finite
element meshes change automatically with the geometric parameters, therefore
handbook users do not need to be concerned with mesh generation. The reader
is encouraged to explore the handbook library, and use it for guidance when
formulating and solving exercise problems in the following chapters.

Having gained some familiarity with StressCheck, the reader will find de-
tailed information in the Master Guide18. The Master Guide is comprised of
four parts: Part 1, the Users’ Guide, provides detailed information about the
user interface, post-processing and the handbook framework. Part 2, the Mod-
eling Guide, explains procedures for the creation of geometric entities in two
and three dimensions and for automatic generation of finite element meshes.
Part 3, the Analysis Guide, provides instructions on the preparation of data for
the various types of analyses supported by StressCheck. Part 4, the Advanced
Guide, provides information about fracture mechanics applications, nonlinear
analysis procedures, the solvers, and other topics that are of interest to ad-
vanced users. Specific topics can be located by means of the Index which can
be accessed through the Bookmarks section of the Master Guide.

17StressCheck is a trademark of Engineering Software Research and Development, Inc.,
St. Louis, Missouri.

18The Master Guide can be found under the main menu heading ‘Help’.
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2.10 Chapter summary

Some fundamental concepts, procedures and definitions, essential for under-
standing the finite element method, were presented in a simple setting:

1. The generalized formulation, its dependence on the boundary conditions,
treatment of natural and essential conditions, definitions of the energy
space, various norms and the potential energy are fundamental to the
finite element method.

2. The approximate solution and hence the error of approximation is de-
termined by the finite element space characterized by the finite element
mesh, the polynomial degrees of the elements and the mapping functions.

3. The finite element solution is unique and minimizes the error in energy
norm, see Theorem 2.4.2 on page 41.

4. All information generated by the finite element method resides in the
standard basis functions, called shape functions, their coefficients and the
mapping functions.

5. The errors in the data of interest depend on how the data are computed
from the finite element solution. In computing the first derivative the
indirect method was substantially more accurate than the direct method.




