

Chapter 6

Logic Design Optimization
Chapter 6

Optimization

● The second part of our design process.
● Optimization criteria:

– Performance

– Size

– Power

Two-level Optimization

● Manipulating a function until it is in a
minimized SOP or POS form.

● Minimizes the number of literals in an
equation and results in a smaller circuit than a
minimized sum-of-minterms or product of
maxterms.

● Use Boolean Algebra
● Use a Karnaugh Map

Karnaugh Maps (K-maps)

● A visual method.
● Good for up to 4 variables. Difficult for 5 or 6

variables. Very difficult for more than 6
variables.

● Start with a truth table for your function.
● A rectangular grid.
● Number of squares is equal to the number of

lines in truth table.

K-Maps

● A two variable K-map.
● Each square is a

minterm
● Only one bit may

change between
adjacent squares.

● Each side of map is a
power of 2.

K-Maps

● 3 variable K-map
● Map the equation

Σm(2,3,5,6)
● Implicant – any

rectangular group of 1's
where rectangle is a
power of 2 on each side.

● Prime Implicant – An
implicant that can't “grow
larger”.

K-Maps

● Essential Prime Implicant – A prime
implicant that has one square that is not
part of another prime implicant.

● Non-essential Prime Implicant – A prime
implicant where every one of its squares is
part of another prime implicant.

K-Maps

● An optimized SOP has all of the essential
prime implicants. It may have non-essential
prime implicants only if the essential prime
implicants don't cover all squares.

● There can be more than one simplified SOP
due to the selection of non-essential prime
implicants.

K-Maps

● Determine essential and non-essential
prime implicants:
– Σm(1,2,3,5,8,9,11,15)

– Σm(5,7,9,13,14,15)

– Σm(0,1,3,4,6,9,11,14,15)

– Σm(1,5,13,14,15)

– Σm(2,3,5,7,8,10,12,13)

K-Maps

● Determine essential and non-essential
prime implicants:
– Σm(0,1,3,5,6,7,8,9,10,12,14,15)

– Σm(1,2,3,5,6,13,14,15)

K-Maps

● To create a simplified POS, select
rectangular regions of 0's.

● These are called Implicates.
● A simplified POS is made up of essential

prime implicates and maybe non-essential
prime implicates.

● Map the equation ПM(0,1,4,6)

K-Maps

● Selecting the 0's as a minimized SOP gives
the inverse of the function.

● Use Demorgan's Theorem to get the
function and at the same time minimized
POS form.

● Usually go straight from K-Map to
minimized POS form.

K-Maps

● Determine essential and non-essential
prime implicates:
– ∏M(1,2,3,5,8,9,11,15)

– ∏M(5,7,9,13,14,15)

– ∏M(0,1,3,4,6,9,11,14,15)

– ∏M(1,5,13,14,15)

– ∏M(2,3,5,7,8,10,12,13)

K-Maps

● Determine essential and non-essential
prime implicates:
– ∏M(0,1,3,5,6,7,8,9,10,12,14,15)

– ∏M(1,2,3,5,6,13,14,15)

K-Maps

● Sometimes you don't care if a minTerm or
maxTerm is a 0 or 1. We call these “don't
cares”.

● Use them to your advantage to create larger
prime implicants or implicates.
– Σm(3,5,8,12), d(1,2,6,7,10,14)

Sequential Logic
Optimization
● State reduction

– A process of reducing the number of FSM states without
changing behavior

– Equivalent states can be removed

– States are equivalent if
● Both states assign the same values to outputs
● For all possible sequences of inputs, FSM outputs will be the same

– To remove equivalent states:
● Remove one of the states from the FSM
● Transfer transitions pointing to the removed state to the other state.

Partitioning method

● Partition states into groups based on the values they
assign to outputs

● List next state values for each state in a group for all
input values.

● Compare states in the group with the same input values
– If for the same input value, two states transition to states in

different groups, they can not be equivalent.

– Partition states that are not equivalent into sub groups and
repeat

Partitioning example

● G1 = {A,D}
– X = 0

● A goes to A (G1)
● D goes to D (G1)

– X = 1
● A goes to B (G2)
● D goes to B (G2)

● G2 = {B,C}
– X = 0

● B goes to D (G1)
● C goes to B (G2)
● Different

– X = 1
● B goes to C (G2)
● C goes to B (G2)

Partitioning example

● G1 = {A,D}
– X = 0

● A goes to A (G1)
● D goes to D (G1)

– X = 1
● A goes to B (G2)
● D goes to B (G2)

● G2 = B
– Only one state

● G3 = C
– Only one state

Partitioning example

● A and D are
equivalent

● Rework the FSM

Partition example

Datapath component
tradeoffs
● Faster adders
● Partial full adder (PFA)

– Break the ripple carry of the Full Adder

– Instead of carry out it has a generate and propagate
carry signal

● Carry lookahead
– Generates multiple carries

● PFA and Carry Lookahead work together

RTL Design Tradeoffs

● Pipelining
– Tradeoff between bandwidth and latency

● Concurency
– Tradeoff between operations per second and

size.

● Operator scheduling
– Tradeoff between operations per second and

size.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

