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Optimization

● The second part of our design process.
● Optimization criteria:

– Performance

– Size

– Power



  

Two-level Optimization

● Manipulating a function until it is in a 
minimized SOP or POS form.

● Minimizes the number of literals in an 
equation and results in a smaller circuit than a 
minimized sum-of-minterms or product of 
maxterms.

● Use Boolean Algebra
● Use a Karnaugh Map



  

Karnaugh Maps (K-maps)

● A visual method.
● Good for up to 4 variables.  Difficult for 5 or 6 

variables. Very difficult for more than 6 
variables.

● Start with a truth table for your function.
● A rectangular grid.
● Number of squares is equal to the number of 

lines in truth table.



  

K-Maps

● A two variable K-map.
● Each square is a 

minterm
● Only one bit may 

change between 
adjacent squares.

● Each side of map is a 
power of 2.



  

K-Maps

● 3 variable K-map
● Map the equation 

Σm(2,3,5,6)
● Implicant – any 

rectangular group of 1's 
where rectangle is a 
power of 2 on each side.

● Prime Implicant – An 
implicant that can't “grow 
larger”.



  

K-Maps

● Essential Prime Implicant – A prime 
implicant that has one square that is not 
part of another prime implicant.

● Non-essential Prime Implicant – A prime 
implicant where every one of its squares is 
part of another prime implicant.



  

K-Maps

● An optimized SOP has all of the essential 
prime implicants.  It may have non-essential 
prime implicants only if the essential prime 
implicants don't cover all squares.

● There can be more than one simplified SOP 
due to the selection of non-essential prime 
implicants.



  

K-Maps

● Determine essential and non-essential 
prime implicants:
– Σm(1,2,3,5,8,9,11,15)

– Σm(5,7,9,13,14,15)

– Σm(0,1,3,4,6,9,11,14,15)

– Σm(1,5,13,14,15)

– Σm(2,3,5,7,8,10,12,13)



  

K-Maps

● Determine essential and non-essential 
prime implicants:
– Σm(0,1,3,5,6,7,8,9,10,12,14,15)

– Σm(1,2,3,5,6,13,14,15)



  

K-Maps

● To create a simplified POS, select 
rectangular regions of 0's.

● These are called Implicates.
● A simplified POS is made up of essential 

prime implicates and maybe non-essential 
prime implicates.

● Map the equation ПM(0,1,4,6)



  

K-Maps

● Selecting the 0's as a minimized SOP gives 
the inverse of the function.

● Use Demorgan's Theorem to get the 
function and at the same time minimized 
POS form.

● Usually go straight from K-Map to 
minimized POS form.



  

K-Maps

● Determine essential and non-essential 
prime implicates:
– ∏M(1,2,3,5,8,9,11,15)

– ∏M(5,7,9,13,14,15)

– ∏M(0,1,3,4,6,9,11,14,15)

– ∏M(1,5,13,14,15)

– ∏M(2,3,5,7,8,10,12,13)



  

K-Maps

● Determine essential and non-essential 
prime implicates:
– ∏M(0,1,3,5,6,7,8,9,10,12,14,15)

– ∏M(1,2,3,5,6,13,14,15)



  

K-Maps

● Sometimes you don't care if a minTerm or 
maxTerm is a 0 or 1.  We call these “don't 
cares”.

● Use them to your advantage to create larger 
prime implicants or implicates.
– Σm(3,5,8,12), d(1,2,6,7,10,14)



  

Sequential Logic 
Optimization
● State reduction

– A process of reducing the number of FSM states without 
changing behavior

– Equivalent states can be removed

– States are equivalent if
● Both states assign the same values to outputs
● For all possible sequences of inputs, FSM outputs will be the same

– To remove equivalent states:
● Remove one of the states from the FSM
● Transfer transitions pointing to the removed state to the other state.



  

Partitioning method

● Partition states into groups based on the values they 
assign to outputs

● List next state values for each state in a group for all 
input values.

● Compare states in the group with the same input values
– If for the same input value, two states transition to states in 

different groups, they can not be equivalent.

– Partition states that are not equivalent into sub groups and 
repeat



  

Partitioning example

● G1 = {A,D}
– X = 0

● A goes to A (G1)
● D goes to D (G1)

– X = 1
● A goes to B (G2)
● D goes to B (G2)

● G2 = {B,C}
– X = 0

● B goes to D (G1)
● C goes to B (G2)
● Different

– X = 1
● B goes to C (G2)
● C goes to B (G2)



  

Partitioning example

● G1 = {A,D}
– X = 0

● A goes to A (G1)
● D goes to D (G1)

– X = 1
● A goes to B (G2)
● D goes to B (G2)

● G2 = B
– Only one state

● G3 = C
– Only one state



  

Partitioning example

● A and D are 
equivalent

● Rework the FSM



  

Partition example



  

Datapath component 
tradeoffs
● Faster adders
● Partial full adder (PFA)

– Break the ripple carry of the Full Adder

– Instead of carry out it has a generate and propagate 
carry signal

● Carry lookahead
– Generates multiple carries

● PFA and Carry Lookahead work together



  

RTL Design Tradeoffs

● Pipelining
– Tradeoff between bandwidth and latency

● Concurency
– Tradeoff between operations per second and 

size.

● Operator scheduling
– Tradeoff between operations per second and 

size.
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