

Chapter 5

Register Transfer Level (RTL) Design
High Level State Machine (HLSM)

Memory
Chapters 5

High Level Sequential
Behavior
● FSM can be used to capture sequential

behavior using bit inputs
● HLSM can be used to capture more

complex logic involving multi-bit variables

Processors

● 'Processor' is a generic term for a circuit
designed using RTL principles
– Programmable Processor – A generic processor

designed to run programs.

– Custom Processor – Specialized design that
implements specific functionality

● Processors can be designed using HLSM

HLSM

● HLSM extends FSMs with features that
make it possible to capture more complex
behaviors.
– Multi-bit data inputs and outputs – assume

unsigned unless specified

– Local Storage

– Arithmetic operations – Add, Multiply, etc.

HLSM Conventions

● HSLMs will follow these conventions
– All inputs, outputs, and local storage are defined at

the top of the HLSM diagram

– Registered values change on rising clock edges

– Transition bits are implicitly ANDed with rising clock
edge

– Any output bit not explicitly assigned is 0

– Any registered value not explicitly assigned holds its
value

HLSM Conventions
(continued)

– Bits are designated by surrounding them with
single quotes, integers have no quotes
● '1' is a bit value, 1 is an integer
● “:=” assigns a value to a variable, “==” compares two

values.
● “//” defines a comment, just as in C or C++

HLSM Example

● Soda Dispenser Processor

Init Wait Add

Dispsense

c

tot := tot + a

c' * (tot >= s)

c' * (tot < s)

d :='0'
tot :=0

d := '1'

Inputs: c (bit), a (8 bits), s (8 bits)
Outputs: d (bit) // '1' dispenses soda
Local Storage: tot (8 bits

HLSM Warnings

● Clocked storage items are not updated in
the same clock cycle that their control
signals are set. Must wait for rising clock
edge

● Note: The register control bits set up in a
state prepare the value on the register
inputs to be captured on the next clock
cycle!

8-bit Up/Down Counter

● Design an HLSM for an 8-bit up/down
counter
– What are the inputs?

– What are the outputs?

– What is the local storage (if any)?

– Draw the HLSM

RTL Design Process

● Capture a HLSM
● Convert to a Circuit

– Create a datapath circuit

– Derive the controller's FSM

– Design controller circuit

– Connect the datapath to the controller

Treadmill Speed Controller

● Design a system to control the speed of the
conveyor on a treadmill.

● Speed is a 4-bit value that is controlled by two
buttons.
– Up button increases speed by one

– Down button decreases speed by one

– If both are pushed, no change in speed

● Speed must initialize to zero upon start up.

Treadmill HLSM

wait

Incr/

Init/

Inputs: up (bit), down (bit)
Outputs: speed (4 bit reg)
Internal Storage: n/a

Speed := 0

Speed := Speed - 1

Speed := Speed + 1

UP • DOWN’

(UP  DOWN)’

decr/

DOWN

UP’ • DOWN

UP’ • DOWN’

UP’ • DOWN’

UP

UP' * DOWN

UP * DOWN'

Treadmill Datapath

Treadmill FSM

UP • DOWN’

(UP  DOWN)’

DOWN

UP’ • DOWN

UP’ • DOWN’

UP’ • DOWN’

UP

UP' * DOWN

UP * DOWN'

State/RST LOAD ADD

0/100 2/000

1/011

3/010

Treadmill Circuit

● Finish designing the controller from the
Treadmill FSM.

● Connect the controller circuit to the
Treadmill Datapath

Types of memory

● Two major types of memory
● Volatile – When power to the device is

removed the contents in memory are lost
● Non-Volatile – Contents in memory remain if

power is removed

Volatile memory

● Usually made form Random Access
Memory RAM

● Simple RAM
● First In First Out FIFO.
● Last In First Out LIFO.
● Dual-port RAM – two independent parallel

accesses to memory.

Volatile Memory

● RAM has further subdivisions
● Static RAM – Write data at an address

location and the memory doesn't change
until the next write at same address.

● Dynamic RAM – Same as Static RAM
except memory refresh is required. Data in
memory decays over a short time and must
be refreshed (write the same value again).

Volatile Memory

Static RAM symbol

Static RAM

● The output is usually a three-state output.
● Sometimes the Data in and Data out share the

same I/O pins.
● CE controls the output and writing.
● To write – The address and data must be set

followed by the CE and R/W' signal set to false.
● To read – The address and CE must be true.

Dynamic RAM

● Similar to Static RAM
● More controls for refresh
● Address is multiplexed between row and

column
● Data in and Data out share the same pins.
● Cost and package size is a major

advantage.

Non-Volatile Memory

● Read Only Memory – Similar to SRAM but no
data input or write signal.

● Programmable ROM – Requires special
programming devices.

● Erasable PROM – Has a window to erase
with UV light

● Electrically EPROM – Can be programmed in
circuit. Slow write speed.

Non-Volatile Memory

● ROM's can be used for implementing logic.
– Address in, data out.

– Looks like a huge truth table

– No logic optimizations

● Programmable Array Logic PAL
● Programmable Logic Array PLA
● Some have a register built-in.

Creating a larger memory

● Memory can be used to create larger
memory.

● Increase the number of words
● Increase the number of bits per word

2Kx8 SRAM from 1K x 4
SRAMs

Mixed SRAM and ROM

● Parts of the address range can be ROM
while other parts can be SRAM.

● Design a 4kx8 mixed ROM and SRAM
memory. The least significant 1kx8 is ROM
while the most significant 3kx8 is SRAM.
Use 1kx8 ROM and SRAM devices and the
minimum additional combinational logic.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

