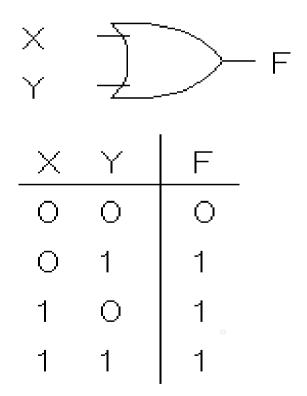
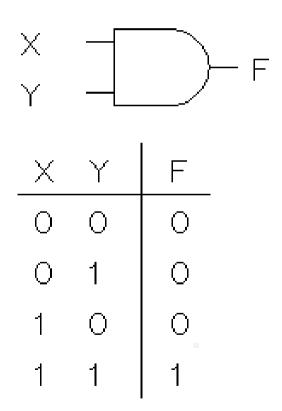

Section 2

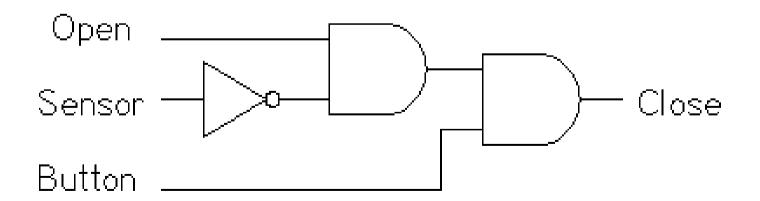
Combinational Logic Design Chapter 2


Basic gates

NOT Gate (Inverter)


Basic Gates

OR Gate


Basic Gates

AND Gate

A Simple Circuit

 Design a garage close circuit that activates the garage door motor when the door is open, the object sensor is off, and Close button is pressed.

Symbol	Name	Description	Priority
()	Parenthesis	Evaluate expression inside parenthesis first	Highest
ı	NOT	Evaluate left to right	
*	AND	Evaluate left to right	
+	OR	Evaluate left to right	Lowest

- Variable A term that represents a value
- Literal The usage of a variable in a formula
- Sum-Of-Products (SOP)

$$F = XYZ + X'Y'Z + XY'Z'$$

Product-Of-Sums (POS)

$$G = (X + Y + Z)(X' + Y' + Z)(X + Y' + Z')$$

Boolean Algebra (Axioms)

$$(A1) X = 0 \text{ if } X != 1$$

$$(A1') X = 1 \text{ if } X != 0$$

(A2) If
$$X = 0$$
, then $X' = 1$

(A2') if
$$X = 1$$
, then $X' = 0$

$$(A3) 0 * 0 = 0$$

$$(A3') 1 + 1 = 1$$

$$(A4) 1 * 1 = 1$$

$$(A4') 0 + 0 = 0$$

$$(A5) 0 * 1 = 1 * 0 = 0$$

$$(A5')$$
 1 + 0 = 0 + 1 = 1

Boolean Algebra (Postulates)

Commutative

$$A + B = B + A$$

 $A * B = B * A$

Distributive

$$A * (B + C) = A * B + A * C$$

 $A + (B * C) = (A + B) * (A + C)$

Pay attention to the second distributive

Boolean Algebra (Postulates)

Associative

$$(A + B) + C = A + (B + C)$$

 $(A * B) * C = A * (B * C)$

Identity

$$0 + A = A + 0 = A$$

 $1 * A = A * 1 = A$

Boolean Algebra (Postulates)

Complement

$$A + A' = 1$$

 $A * A' = 0$

Null Elements

$$A + 1 = 1$$

 $A * 0 = 0$

Idempotent Law

$$A + A = A$$

 $A * A = A$

Involution Law

$$(A')' = A$$

DeMorgan's Law

$$(A + B)' = A'B'$$

 $(AB)' = A' + B'$

DeMorgan's can be extended to more variables

Covering

$$X + X * Y = X$$

 $X * (X + Y) = X$

Combining

$$X * Y + X * Y' = X$$

 $(X + Y) * (X + Y') = X$

Consensus

$$X * Y + X' * Z + Y * Z = X * Y + X' * Z$$

 $(X + Y) * (X' + Z) * (Y + Z) = (X + Y) * (X' + Z)$

Prove the following using algebraic manipulation

$$X'Y' + X'Y + XY = X' + Y$$
 $A'B + B'C' + AB + B'C = 1$
 $Y + X'Z + XY' = X + Y + Z$
 $X'Y' + Y'Z + XZ + XY + YZ' = X'Y' + XZ + YZ'$

Prove the following using algebraic manipulation

$$AB + BC'D' + A'BC + C'D = B + C'D$$

Given that A * B = 0 and A + B = 1, use algebraic manipulation to prove that

$$(A + C) * (A' + B) * (B + C) = B * C$$

Principle of Duality

 Any theorem or identity in Boolean Algebra remains true if 0 and 1 are swapped and the AND and OR operations are swapped throughout

Truth Tables

- A truth table may be expressed by many different equations.
- Prove two functions are equal by induction.
- Optimizing a function usually requires creating a truth table.

Standard Forms

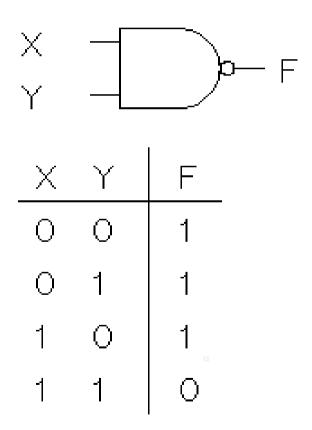
A	В	C	MinTerm		MaxTerm	
0	0	0	A'B'C'	m0	A+B+C	M0
0	0	1	A'B'C	m1	A+B+C'	M1
0	1	0	A'BC'	m2	A+B'+C	M2
0	1	1	A'BC	m3	A+B'+C'	M3
1	0	0	AB'C'	m4	A'+B+C	M4
1	0	1	AB'C	m5	A'+B+C'	M5
1	1	0	ABC'	m6	A'+B'+C	M6
1	1	1	ABC	m7	A'+B'+C'	M7

Standard Forms

Sum of Minterms

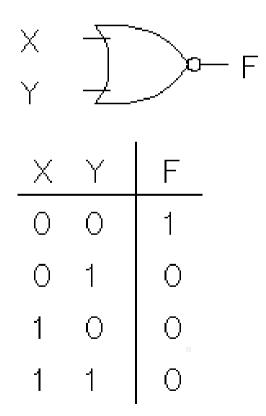
- Product terms
- Each term contains each variable.
- A term is one line or element on a truth table.
- For each line in a truth table that is 1, that term is part of the final equation.
- Write the Sum of Minterms for table 2.3 on page 67.
- Can be written as $\Sigma m(mx, my, ...)$

Standard Forms

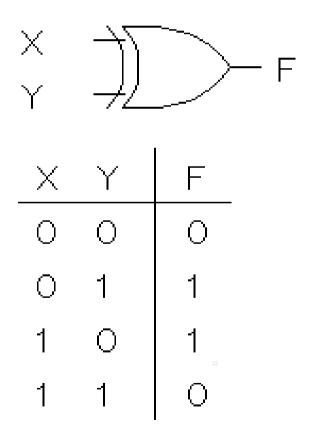

- Product of Maxterms
 - Sum terms.
 - Each term contains each variable.
 - A term is one line or element on a truth table.
 - For each line in a truth table that is 0, that term is part of the final equation.
 - Write the Product of Maxterms for table 2.3 on page 67.
 - Can be written as $\prod M(Mx, My, ...)$

Combinational Logic Design Process

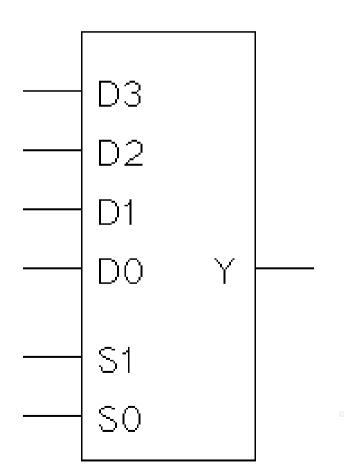
- Create a truth table.
- Write optimized equations. (We still need to cover optimization in 6.2).
- Draw schematic or create hardware description from optimized equations.


Additional Gates

NAND gate

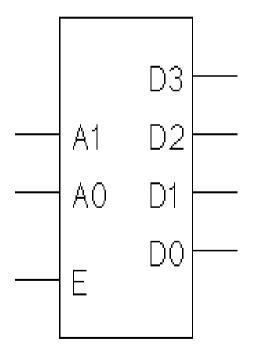

Additional Gates

NOR gate

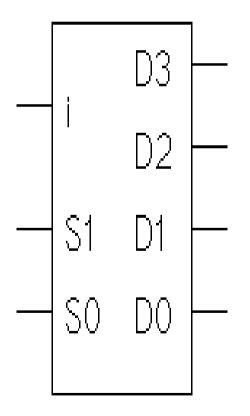


Additional gates

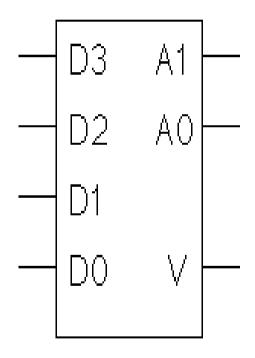
XOR gate (odd function)



Multiplexer


<u>S1</u>	SO	Υ
0	0	DO
0	1	D1
1	0	D2
1	1	D3

Decoder


_	E	<u>A1</u>	Α0		D2		
	0		Χ	0	0 0 0	0	0
	1			0	0	0	1
	1	0	1	0	0	1	0
	1	1	0	0	1	0	0
	1	1	1	1		0	0

Demultiplexer

<u>S1</u>	SO	D3	D2	D1	D0
0	0	0	0	0	
0	1	0	0	j	0
1	0	0		0	0
1	1		0	0	0

Priority Encoder

D3	D2	D1	D0	V	A1	<u>A</u> 0
0	0	0	0	0	0	0
0	0	0	1	1		0
0	0	1	X	1	0	1
0	1	Χ	X	1	1	0
1	Χ	Χ	χl	1	1	1

Timing

- Real logic gates take time to react to an input change.
- The delay is called the propagation delay.
- A complicated circuit may have "glitches" in its output signals when the inputs change from one state to another.
- Reducing "glitches" often requires extra logic gates.