JEE2330 – Spring 2025 Lab #7 Problem

A grounded emitter transistor amplifier circuit using the 2N222A BJT is shown. A graphical analysis of the transistor shows that $\beta_{DC}=\beta_{AC}=150$ and $r_{oc}=50$ k Ω . Also, tests show that $V_{BE(on)}=0.7$ V and $V_{CE(sat)}=0.2$ V. The amplifier design characteristics are $V_{CC}=10$ V, $R_B=330$ k Ω , $R_C=1.6$ k Ω , $R_L=3.0$ k Ω , and $C_1=C_2=2.5$ uF. Analyze the circuit following the steps given below.

1. Identify the transistor operating point (Q point).

$V_{CEQ} = $ _	
$I_{CQ} = $	
$I_{BO} =$	

2. Calculate the transistor small signal input resistance r_{π} assuming the operating temperature is 27°C.

*	_		
1π			

3. Find the small signal voltage amplifier circuit parameters r_i , r_o , and a_{vo} ($a_{vo} = v_o/v_{in}$ with $R_L = \infty$) and draw the equivalent circuit on the back of this sheet. Include on the equivalent circuit diagram the voltage source (v_s and R_s), the load resistance (R_L), as well as r_i , r_o , and a_{vo} . Assume $X_{C1} = X_{C2} = 0$.

$\mathbf{r}_{\mathrm{i}} =$	
$r_o =$	
a _{vo} =	

4. Using the small signal voltage amplifier equivalent circuit diagram, find the small signal voltage gain ($a_v = v_o/v_{in}$) with $R_L = 3.0 \text{ k}\Omega$ for the circuit at a midrange frequency of 40 kHz.

a_{v}	_
av	_

5. Using the small signal voltage amplifier equivalent circuit diagram, find the overall small signal voltage gain ($A_v = v_o/v_s$) with $R_L = 3.0~k\Omega$ for the circuit at a midrange frequency of 40 kHz assuming $R_S = 50~\Omega$.

$\mathbf{A}\mathbf{w}$	_		
$\neg v$	_		