A series RLC circuit like the one shown here will be constructed in the lab this week. Assume that the generator resistance \(R_g = 50 \, \Omega \), the external resistor \(R_e = 100 \, \Omega \), \(L = 47 \, \text{mH} \), \(r = 227 \, \Omega \). Also, assume that \(v_g(t) = 4 \cos(2\pi ft) \) volts, where \(f = 10 \, \text{kHz} \).

1. Compute the quality factor of the inductor at \(f = 10 \, \text{kHz} \).
 \[Q = \ldots \]

2. Compute the value of the capacitor needed to resonate with the inductor at 10 kHz.
 \[C = \ldots \]

3. Compute the bandwidth of the resonant circuit in Hz.
 \[\text{BW} = \ldots \]

4. Compute the quality factor for the circuit at resonance.
 \[Q_c = \ldots \]

5. Define the phasor voltage \(V_g \) provided by the function generator.
 \[V_g = \ldots \]

6. Compute the corresponding phasor current \(I \) in the circuit at resonance.
 \[I = \ldots \]

7. Compute the corresponding phasor voltage \(V_C \) across the capacitor at resonance.
 \[V_C = \ldots \]

8. Compute the power dissipated by the external resistor \(R_e \) at resonance.
 \[P_{Re} = \ldots \]

9. Compute the real power dissipated in the inductor at resonance.
 \[P_r = \ldots \]