JEE2330 – Spring 2025 Lab #2A Problem

In the laboratory, you are to construct an RC circuit similar to the one shown below. In this circuit, assume that $R_1 = 15 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, $C = 0.03 \mu\text{F}$, and the source voltage $v_s(t)$ is shown on the left as a step change from $V_2 = -3V$ to $V_1 = 7V$ at t = 0. In the steps below, you are asked to determine the voltage across the capacitor.

1. Redraw the circuit using the Thevenin equivalent circuit that is seen by the capacitor at terminals a and b.

 $V_T =$ _____ $R_T =$ _____

 $v_{\rm C}(\infty) =$

τ = ____

- 2. Assuming that $v_s(t) = V_2$ for a long period of time (> 10 τ) prior to t = 0, what is the initial value of the capacitor voltage at t = 0? . $v_c(0) =$ _____
- 3. What is the final value of the capacitor voltage?
- 4. What is the time constant for this circuit?
- 5. Write the equation for $v_C(t)$ for t > 0, fill in the table below, and accurately sketch the waveform for $v_C(t)$.

t (µsec)	v _C (t) (volts)
0	
200	
400	
600	
800	
1000	