
JEE2330 – Spring 2025 Lab #1 Problem

A DC circuit similar to that of Figure 1.10 of the lab manual is shown below. In this circuit, $R_1 = 2.2 \text{ k}\Omega$, $R_2 = 1.5 \text{ k}\Omega$, and $R_3 = 1.5 \text{ k}\Omega$.

- 1. Calculate the source voltage V_S if $I_S = 4$ mA.
 $V_S = _$ ______

 2. Calculate the current I_2 through R_2 if $I_S = 4$ mA.
 $I_2 = _$ _____

 3. Calculate the open circuit output voltage V_{OC} for this circuit.
 $V_{OC} = _$ _____

 4. Calculate the short circuit current I_{SC} .
 $I_{SC} = _$ ______

 5. Calculate the Thevenin resistance R_T .
 $R_T = _$ ______
- 6. Use the Thevenin equivalent circuit to calculate the expected reading of a laboratory DMM set to the 20 V scale if it is used to measure the output voltage V₀. Be sure to consider the resistance of the DMM on the 20 V scale.

V₀ = _____

7. Use the Thevenin equivalent circuit to calculate the expected reading of a laboratory DMM set to the 20 mA scale if it is used to measure the short circuit current I_{SC} . Be sure to consider the resistance of the DMM on the 20 mA scale.

 $I_{SC} =$

8. Calculate the Thevenin resistance based on the DMM readings. $R_T =$ _____