The midterm exam covers the first five experiments of the semester. All the theory covered in class and in the book is fair game.

Recommendations for preparation:
- Review the lab problems for Labs 1 through 5.
- Skim the lab reports for Labs 1 through 5.
- Review AC and DC circuit analysis skills.

- **Chapter 1: DC Circuit Measurement and Analysis**
 - Effect of placing a meter in a circuit
 - Effect of a meter’s scale on measurements (20mA vs. 200mA, etc)
 - Indirect current measurement (voltage across resistor)
 - Percent error
 - Voltage/Current divider
 - Reduction of series/parallel resistors
 - Thevenin/Norton equivalents
 - Source transformation

- **Chapter 2: The Oscilloscope and Transient Analysis**
 - RC circuit analysis
 - Electrical representation of the probe
 - Probe effects on a circuit
 - Effect of improper grounding on a circuit
 - RL circuit analysis
 - Relay analysis (ex: Find V_{CH2} in Fig 2-25 for V_t square wave between 0 and V_{pp}, and any R_3, R_4)
 - RLC circuit analysis

- **Chapter 3: AC Circuit Analysis**
 - Phasor analysis (converting between $X\angle \theta$ to $X\cos(\theta)+jX\sin(\theta)$ and back)
 - Impedance of R, L, and C
 - Finding real and complex currents and voltages using phasors
 - Drawing bode diagrams
 - Magnitude and phase calculations
 - Low-pass filter circuit and characteristics
 - High-pass filter circuit and characteristics
• **Chapter 4: Characteristics of Periodic Waveforms**
 o Power and energy of a circuit element
 o Fourier series representation of a signal
 o RMS and EFF voltage (similarly V_{AC} and V_{DC})
 o Power and energy of a sinusoidal wave
 o Parseval’s Relation

• **Chapter 5: Circuits Containing Inductance**
 o Output impedance of a function generator
 o Terminal properties of inductors
 o Series resonance
 o Parallel resonance
 o Mutual inductance