
 

CIRCUITS LABORATORY 

EXPERIMENT 5 

Circuits Containing Inductance 
 

5.1 Introduction 

Inductance is one of the three basic, passive, circuit element properties.   It is inherent 

in all electrical circuits.  As a single, lumped element, inductors find many uses.  These 

include as buffers on large transmission lines to reduce energy surges, on a smaller scale 

to serve a similar function in electronic circuits, as elements in frequency selective filters 

in telecommunication circuits, as momentary energy storage devices in power supplies 

that convert power from one voltage level to another, and as devices for exerting 

mechanical force in electromagnets and similar electromechanical devices. 

   Inductors are unique in that they can be magnetically coupled such that a time-varying 

current in one will cause a voltage to be generated in a second inductor in close 

proximity.  This ‘mutual inductance’ is the basis for the electrical transformer that is 

ubiquitous in the electric power industry.  Transformers, with their impedance 

transforming property are also useful in electronic circuits over almost the entire 

frequency spectrum.  We will not cover all these uses in this experiment but will mainly 

concentrate on the resonant circuit with inductor and capacitor, and on the measurement 

of mutual inductance between two air-core inductors. 
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5.2 Objectives 

In this experiment the student should learn: 

(1) How to measure the output impedance of a signal source, 

(2) The circuit representation of an inductor, 

(3) The definition of ‘quality factor’ or Q of a reactive element or circuit, 

(4) The characteristics of a series resonant circuit, 

(5) The characteristics of a parallel resonant circuit, 

(6) Measurement of mutual inductance as a function of separation distance, and 

(7) A data reduction method for comparing theoretical expectations with experimental 

results. 

 

5.3     Function Generator Properties 

5.3.1    Output Impedance 

The Hewlett-Packard 33120A function generator is our signal source in this exercise.  

It can supply a sine, square, triangular, or unsymmetrical square wave (pulse) over a 

frequency range of about 0.01 Hz to 5 MHz.  Its peak-to-peak output voltage with open 

circuit load is adjustable from less than 0.2 V to 60 V, and once set, the output magnitude 

on open circuit is essentially constant as the frequency is varied. 

The 33120A is not a perfect signal source.  We may represent it in circuit form as 

shown in figure 5.1. 
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  Figure 5.1:  Function generator representation. 
 

One of the things we will do in the experimental part of this exercise is to determine 

the value of Rg for the HP33120A.  Several methods are available to do this.  Perhaps the 

simplest is to simply set the generator voltage to a reasonable value, VS, on open 

circuit.  A resistor, RL, is then placed across the generator terminals and, as can be seen  

 

 

 

 

   Figure 5.2:  Function generator with load resistor. 

from figure 5.2, the terminal voltage will decrease to a value, VT, where 

 

 

or  

        

 

Rg is termed the ‘internal impedance’ of the generator.  Note that, if Rg were an 

impedance, Zg, with a resistive and a reactive part, the measurement method above would 

not yield the correct value for even the |Zg|, let alone the resistive and reactive parts.  A 
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more complex experimental procedure would need to be used in this case, possibly 

involving termination with several different values of resistance and reactance. 

    If the exercise is properly done, the value of Rg obtained for the HP33120A should be 

about 50Ω.  In equipment designed for use at high frequencies, best performance is 

obtained if the output and input impedance of interconnected apparatus is the same value.  

Partly due to the physical characteristics of cables and partly due to convention, this 

impedance level has been standardized at 50Ω.  There are exceptions, however.  For 

many years, telephone and some audio apparatus, whose proper operation also requires 

impedance matching, has standardized on the value of 600Ω. 

5.4    Inductors 

All electrical circuits possess inductance to a greater or lessor degree.  Commonly, a 

circuit element that is primarily inductive can be formed by a coil of wire.  The 

inductance can be enhanced if the coil links material with a high magnetic permeability 

such as soft iron, laminated steel, powdered iron, or ferrite.  In this exercise we will use 

an air core coil, i.e., one that has no magnetic material in its interior. 

    A two-terminal element, such as an inductor coil at a particular frequency, has an 

impedance given by 

   Z = r + jX       (5.3) 

Both r and X will generally be functions of frequency.  If X has a positive value, we say 

the element is ‘inductive’ at that frequency.  It should be noted that the expression  

Z = r + jX implies a series representation of the element with a resistor and inductor  

(if X > 0) in series.  A parallel representation is equally valid at a single frequency. 
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Figure 5.3 shows the relationship between the two representations. 

 

 

 

 

 

 

 

Considering that a wire-wound inductor has an inherent resistance due to the 

resistance of the wire itself, the series representation of the inductor with its unavoidable 

resistance seems the most natural and gives elements whose frequency variation is 

simpler than if the parallel representation were used.    Typically, X for an inductor will 

vary with radian frequency, ω, as  

     X = ωL.     (5.5) 

This is valid up to some upper frequency limit, where the inter-turn capacitance of the 

coils in the inductor cause dX/dω to become larger than L.  At some frequency in this  

range, the coil will be ‘self-resonant’ and its reactance will be capacitive rather than  

inductive, at frequencies larger than the self-resonant frequency. 

     Coil resistance also varies with frequency.  This is because at higher frequencies 

current exists primarily on the surface of conductors rather than the interior and so the 

resistance of a conductor increases as frequency increases, although not linearly as is the 

case with inductive reactance. 

Figure 5.3:  Series-parallel equivalence 
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A quantity that is commonly used to characterize an inductor is the ‘quality factor’, 

abbreviated as ‘Q’.  If the coil is represented as a series resistor, r, and reactor, X, then 

    
             . 
            

Wire-wound inductors with a substantial number of turns will have Q values in the range 

of 10 to 50.  Since both X and r vary with frequency, so also will the Q value and there 

will be a frequency at which the coil Q has a maximum value.  It should be mentioned 

that Q has a broader definition than the one given above.  More generally, for an 

oscillating system 

           (5.7) 

5.5  Series Resonance 

Figure 5.4 shows a circuit with an inductor, L, and a capacitor, C, connected in series.  

Also in series is a signal source, VS, with its associated output resistance, Rg, and, 

possibly, an external added resistor, Re.   
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Figure 5.4:  Series resonant circuit 
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The capacitor, C, is assumed to be lossless.  This is not strictly true, and, indeed, just as 

for an inductor a Q value could be ascribed to a capacitor to account for its loss.  

However, a capacitor of reasonable quality can easily have a Q value exceeding several 

hundred and so for simplicity we will neglect any capacitor loss here. 

    It is straightforward to compute the value of the current, I, in this circuit.  We have 

 

 

where 

  

Note that ωo is the resonant natural frequency and QC is the “quality factor“ of the circuit  

A graph of I versus frequency gives a "resonance curve" with its characteristic bell shape 

showing the peak value and the bandwidth (BW). 

  

 

 

 

 

 

 

  Figure 5.5:  Resonance curve for series resonant circuit 

 

From Equation 5.8 it is clear that  
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    As defined here, QC is the circuit Q and is determined by the total series resistance in 

the circuit.  Note that the selectivity or relative narrowness of the resonance curve is 

governed by the value of QC.  Higher values of QC imply a narrower curve or greater 

selectivity in the frequency range to which the circuit is responsive.  In the event that the 

total series resistance were at its minimum value, namely just the resistance, r, inherent in 

the inductor, then the QC  of the resonant circuit would be equal to the inductor Q.  Added 

circuit resistance causes the circuit QC to be less than the inductor Q. 

5.6    Parallel Resonance 

Connecting an inductor and a capacitor in parallel gives a second type of resonant 

circuit.  The major features of parallel resonance are best illustrated by the idealized 

circuit of figure 5.6. 

 

   

 

  Figure 5.6:  Idealized parallel resonant circuit 

Here, we may verify that the voltage across the circuit, V0, is given by: 
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Plotting V0 vs. frequency in figure 5.7 gives a resonance curve similar to that for the 

series case. 

 

 

 

 

 

 

 

   Figure 5.7:  Resonance curve for parallel resonant circuit 

From Equation 5.11, it is apparent that the voltage across the circuit, V0, is maximum at 

the frequency, ω0, and that the maximum value of V0 is 

   V0max = R Ig.       (5.13) 

One difference between parallel and the series resonant circuits is the QC value, which 

determines the circuit bandwidth or selectivity.  For the parallel circuit, QC is 

 

 

while QC for the series circuit is 

 

 

The general definition for Q given by Equation 5.7 encompasses both of these cases.  

Of course, in a parallel resonant circuit with an actual inductor, the inductor has a 

resistance that must be taken into account.  This can be accomplished by using the 
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series-parallel transformation given previously and shown below. 

  

 

 

 

 

 Figure 5.8:  Series-parallel transformation, all elements are resistors or reactors. 
 
 
We will assume that, over the frequency range where the inductor is being used, X/r is 

relatively large, say > 10, so that there is little error is in simplifying the transformation to 

 

 

 

 

 
 
  Figure 5.9:  Simplified approximate series-parallel transformation. 
 
 

A numerical example can be used to illustrate.  Consider a 10mH inductor with a 

quality factor Q of 30 at ω0.  It is connected in parallel with a 0.025μF capacitor, which 

combination is in series with a 15kΩ resistor.  When driven by a voltage source of 

negligible output impedance, what will be the relative variation of voltage with frequency 

across the L-C circuit near resonant frequency?  Figure 5.10 shows the original circuit 

and the equivalent one using the simplified transformation of Figure 5.9.  Note that for ωo 

= 63,245 rad/sec, the element values are X = 632.5 Ω, r = 21.08 Ω, and X2/r = 19.0 kΩ.  
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Using Norton’s theorem allows circuit (b) to be drawn in the idealized form of Figure 5.6 

with R = 15 kΩ//19 kΩ = 8.38 kΩ.  The plot of relative output voltage vs. frequency is 

shown in Figure 5.11. 

 

 

 

 

 

 

 

 

   Figure 5.11:  Numerical example result. 

5.7 Inductive Coupling or Mutual Inductance 

5.7.1  Mutual Inductance 

In a region of space where currents exist, if there is no magnetic material present, the 

magnetic flux is linearly proportional to the currents in the region.  Consider a number of 
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current meshes labeled (1, 2, ...,j, ...J) carrying mesh currents ij(t) and linking fluxes Ψj(t).  

Then 

 Ψk(t) = Lk1i1(t) + Lk2i2(t) + ... + Lkjij(t) + ... +LkJiJ(t) =   (5.16) 

In Eq. 5.16 the coefficients Lkj (j ≠ k) are termed the ‘mutual inductances’ of the kth 

mesh while Lkk is called the ‘self-inductance’.  Conventionally, the mutual inductances 

are denoted by the letter M while the letter L is reserved for self-inductance. 

    There will be induced in mesh k a voltage of the form 

 

 

It is clear that the magnitude of this voltage depends on several factors, which include 

geometric orientation, coil spacing, and current magnitudes. 

5.7.2    Mutual Inductance Between Two Small Circular Loops Widely Separated 

The mutual inductance between two circular loops of average radius a, aligned along 

the same axis and perpendicular to that axis, is rather simply approximated when the 

loops are sufficiently far apart. If the separation distance of the centers of the two coils is 

z, then the value of this inductance is approximately 

 

where  

  

and μ0 = 4π(10)-7 Henries/meter, further 
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5.7.3    A Two-coil Circuit with Mutual Inductance 

Consider the coupled circuit shown in Fig. 5.12.  Kirchhoff’s current law for these two  

 

 

 

 

              Figure 5.12:  Circuit with two magnetically coupled coils. 

meshes can be written down at once : 

  Vg =  Zg I1 + jωL11I1 - jωMI2      (5.20) 

  0 =  - jωMI1 + ZL I2 + jωL22I2.       (5.21) 

The output voltage Vo across ZL is just I2ZL.  So: 

   

 

If    ωL22 << |ZL| and ZgZL >> ω2M2 or if the secondary circuit is open (I2 = 0), then 

   

 

Eq. (5.23) is the so-called ‘weak-coupling’ limit.  It expresses the commonly observed 

physical reality that a large (relatively speaking) current in a ‘primary winding’ can 

induce a significant voltage in a ‘secondary’ winding without being affected by the 

resulting current in the secondary winding. 

    There is also a ‘strong-coupling’ limit of Eq. (5.22).  If ωL11 >> |Zg|, L11L22 = M2, and 

|ZL| >> ωL22, then  
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Eq. (5.24) applies to that most valuable linchpin of modern civilization, the power 

transformer.  Unfortunately, we will not have time to investigate it in this course. 

5.7.4     Linearizing Transformations 

This is a complicated topic in all of its advanced details, but the philosophy that underlies 

it is simple enough.  Consider two variables, x and y, whose values are associated, and let 

N data pairs (xn, yn) be experimentally collected.  Assume that, over an interval  (Xa, Xb), 

there is a theoretical monotonic relation between x and y such that 

  y = f(x; α, β)  Xa ≤  x  ≤  Xb  ,   α, β constants  .  (5.25) 

The problem is to use the observed data to determine the most likely values of the 

constants, α and β. 

    We define two transformations u = u(x,y) and v = v(x,y) such that Eq. (5.25) is 

transformed into the familiar linear slope-intercept form given as  

  v = m u + b,        (5.26) 

where  

  m = m(α, β)        (5.27) 

  b = b(α, β).        (5.28) 

In this way the data set (xn,yn)  (n = 1, ... N) is transformed into the set (un,vn), the 

members of which should plot along a straight line.  The great advantage of the 

transformation to the variables u and v is that a simple linear regression (or a quick sketch 

with a straight edge) passes a ‘best fit’ straight line through the transformed points and 

yields estimates of m, the slope, and b, the intercept on the v axis, from which the values 

of α and β can be deduced. 
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As an example, consider the case where x and y are related by the equation: 

  y = αxβ  .        (5.29) 

Taking the logarithm of both sides yields  

             ln (y)  =  β ln (x) + ln (α)  . 

Here, v = ln (y), u = ln (x),  m = β  , and  b = ln (α)  . 

As another example, suppose the theoretical relation between x and y is 

    . 

This equation can be linearized in several different ways.  They are 

a)                                (5.31a) 

 

b)                    (5.31b) 

 

c)     .                  (5.32b)  

 

It is apparent from this latter example that a number of data linearizing transformations 

may exist for a given theoretical relation. 
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5.8 Experimental Procedure 

5.8.1 Equipment List 

1     Test station with standard equipment 

1     Clamp stand with swivel holder 

2     J. W. Miller 990 inductors (nominal R <318Ω, L = 47 mH) 

1     Plastic rod (18”long by 3/8”diameter) with one of the inductors affixed. 

1     Meter stick. 

5.8.2 Function Generator Output Impedance 

Use a DMM to measure the actual resistance of the 47 Ω, 1 W, resistor and record this 

value.  Using a 10x probe, set the open circuit output voltage (Vgo) of the HP33120A 

function generator to a 8 Vp-p sine wave of 100 Hz.  Next, connect the 47Ω resistor across 

the output terminals of the function generator.  Measure the voltage across the resistor 

using a 10x probe and record its value.  Repeat for 1 kHz, 10 kHz, and 100 kHz. 

5.8.3  Series Resonance 

3.1  Measure with the DMM and record the DC resistance of the 47mH inductor. 

Compute the value of capacitor needed to resonate with the inductor at fa.  Construct 

a series resonant circuit consisting of the function generator, a 100Ω, 1 W resistor, 

one of the 47mH inductors, and a fixed lumped capacitor.  Use the nearest single 

standard size fixed capacitor available in the laboratory for this circuit. 

3.2  With its output displayed on Channel 1, set the function generator open circuit 

voltage to 8 V peak-peak at a frequency of fa.  Display the voltage across the 100 Ω 

resistor on Channel 2 and use the X-Y display function on the scope to find 
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and record the actual resonant frequency f0 by adjusting the function 

generator frequency slightly above or below fa.  Now calculate the theoretical 

circuit bandwidth (BW) in Hz and take data at evenly spaced frequencies from 

one BW below f0 to one BW above f0 to clearly delineate the resonance curve.  

Record in a table the Channel 1 and Channel 2 voltages at each of these 

frequencies.  Also, locate and record the voltages at the resonant frequency f0 and 

at the two half-power point frequencies (f1 and f2). 

3.3  Repeat Step 3.2 with a 1000Ω series resistor.  

5.8.4 Parallel Resonance 

4.1 Using the capacitor that you used in 5.8.3 above, a 100 kΩ resistor, the 47mH 

inductor, and the function generator, construct a parallel resonant circuit similar to 

that in Figure 5.10(a) where the inductor and capacitor are in parallel and this 

combination is in series with the 100 kΩ resistor and the function generator.  Again 

set the function generator open circuit voltage to 8V peak-peak and frequency fa.  

Using the 10x probe to display the capacitor voltage on Channel 2, find and record f0 

using the X-Y display function.  Calculate the theoretical BW in Hz and record in a 

table the Channel 1 and 2 voltages over the frequency range from one BW below f0 

to one BW above f0 to clearly delineate the resonance curve.  Also, locate and record 

data at f0 and at the two half-power point frequencies (f1 and f2). 

4.2  Repeat 4.1 above, except now use a 20 kΩ series resistor. 

5.8.5    Mutual Inductance 

5.1 Use a clamp-stand to hold the rod with the permanently affixed inductor and connect 

it to the HP33120A function generator through a DMM ammeter.  Connect the  
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DMM voltmeter across the second movable inductor. 

5.2  Set the function generator to its maximum sine wave output at a frequency of 

fb as given by your instructor.  Using the two DMMs to measure the primary current I1 

and secondary voltage V2, take sufficient data to determine M(z), where z is the 

separation distance of the centers of the two coils.  Note that z is approximately 1.3 

cm when the faces of the two coils touch. 

5.9 Report 

5.9.1 Output Impedance 

1.1  From your experimental data, compute the output resistance of the function generator 

at all four frequencies.  Considering the fact that reactance varies with frequency, 

what do these calculated resistances tell you about the nature of the impedance of the 

function generator?  Are your results in agreement with the manufacturer’s value of 

50 Ω?  What are the % difference between your results and the specified 50 Ω? 

1.2  Why will this method give erroneous results if the output impedance is not purely 

resistive?  Suggest another method that might give improved results for this case. 

5.9.2 Series Resonance 

2.1 Plot your current data versus frequency in Hz for the two values of external series 

resistor that you used.  Use a linear frequency scale chosen to give a resonance 

curve over twice the calculated bandwidth.  Compare the measured bandwidth with 

the calculated bandwidth for both cases.  Are your results reasonable? 

2.2  Determine QC for the circuit from the experimental data for the above two cases. 
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2.3 From the measured bandwidth obtained in 2.1 above, calculate values for the series 

resistance of the inductor at resonant frequency for both cases assuming the 

inductance is 47 mH.  Compare these resistances with the DC value measured with 

the ohmmeter.  Which is larger? 

2.4 Calculate the Q of the inductor at resonant frequency from each of your two sets of 

data.  Show your calculations.   

5.9.3 Parallel Resonance   

3.1  Plot your voltage data versus frequency for the two values of external series resistor 

that you used.  Use a linear frequency scale.  Compare the measured bandwidth 

with the calculated bandwidth for both cases.  Are your results reasonable? 

3.2  Determine QC for the circuit from the experimental data for the above two cases. 

3.3  From the results of obtained in 3.1, calculate values for the series resistance of the 

inductor at resonant frequency for both cases assuming the inductance is actually 47 

mH.  Are the results in agreement with those obtained for series resonance? 

3.4  Calculate the Q of the inductor at resonant frequency from each of your two sets of 

data.  Show your calculations.  Do your results agree with the Q value as calculated 

from the series resonance data?   

5.9.4 Mutual Inductance 

4.1  Use your data to derive values of the mutual inductance, M(z).  Present the results in 

tabular form, i.e., M(z) versus z. 

4.2  Design a suitable linearizing transformation to demonstrate that Eq. 5.18 is at least 

qualitatively correct.  From your linear plot, deduce a value for the coil radius, a. 
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5.9.5   Design Problem  

 

 

 

   Figure 5.13:  Design Problem Circuit. 

In Figure 5.13, the generator is sinusoidal at a frequency f specified by the instructor.  

Design a L-C network using a single inductor L and single capacitor C to obtain 

maximum power transfer to the resistive load RL.  Assume the inductor is lossless for 

design purposes.  Hint: Assume a series inductor followed by a shunt capacitor, transform 

the resulting parallel RLC circuit into a series circuit, and apply the criteria for series 

resonance to obtain maximum power transfer. 

Document your design by providing the following: 

5.1  A circuit diagram that includes the generator, resistors, L-C network, and the load, 

5.2  The values selected for the inductor L and the capacitor C, 

5.3  The power delivered to the resistive load assuming Vg = 10 Vrms, 

5.4  The power delivered to the resistive load if the inductor is not lossless, but instead 

has a "Q" of 20 at the specified frequency f.  
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