
      

 
 

CIRCUITS LABORATORY 
 

EXPERIMENT 4 
 

Characteristics of Periodic Waveforms 
 

 
 4.1 Introduction  
 

 
Waveforms encountered in electronic circuits are often characterized by a variety of  
 
parameters that succinctly summarize important features. Examples include the peak 
  
value, average value, and effective value of the waveform. Such parameters can be 
  
used for periodic waveforms, pulse waveforms, and even random or noise  
 
waveforms.  
 
     In this experiment, you will measure some important parameters of periodic  
 
waveforms in simple electronic circuits. The measurements will be compared to the  
 
parameter values predicted by analysis of the waveforms. As a result of exercise, you  
 
will gain a thorough understanding of how to measure and analyze periodic wave 
 
forms with the equipment available in our lab. 
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4.2 Objectives 
 
At the end of this experiment, the student will be able to:  
 

(1) determine the Fourier series and RMS value for an arbitrary periodic  
 
      waveform,  
 
(2) use the oscilloscope to measure periodic waveforms in both the DC coupled  

 
      and AC coupled modes, understanding the difference between these two  
 
 modes, 
 
(3) measure the RMS voltage of a periodic waveform using only the DMM, 

 
(4) develop a polynomial approximation to fit a particular set of data,  

 
(5) use Parseval's equation to predict the RMS voltage of a periodic waveform, 

 
(6) perform simple power calculations, and  

 
(7)  design a simple rectifier through the use of a diode. 

 
4.3 Theory  

4.3.1 Power and Energy for Arbitrary Waveforms  
 
Shown in Figure 4.1 is a two-terminal electrical element with voltage, v(t), and  
 
current, i(t), having the assigned polarities. This could be a resistor, capacitor, 
  
inductor, or even a combination of these with other elements to form an electrical  
 
circuit with two access terminals. The instantaneous power, p(t), absorbed by the  
 
element is by definition the product of the voltage and current, p(t) = v(t)i(t).  
 
     For an ideal resistor of resistance R, v(t) = Ri(t), so the instantaneous power 
  
for a resistor may be expressed in terms of the resistance and either the current or  
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   Figure 4.1: A two-terminal electrical element  
 
 
voltage alone according to 
 
                                      
   p(t) = Ri2(t) = v2(t)/R.     (4.1) 
 
 
Since R > 0, it follows for a resistor that the instantaneous power is always positive,  
 
which means that a resistor can only absorb power. The power absorbed by a resistor 
  
is converted into heat, which is dispersed into the surrounding environment. The tem- 
 
perature of the resistor will rise until an equilibrium point is reached where the power 
  
being absorbed equals the power being dispersed. If the material of which the resistor  
 
is made and the geometry of the resistor are such that too high a temperature is  
 
required for equilibrium, the resistor "burns out" and the continuity of the circuit 
  
branch containing it is broken so the resistor is just a useless blown fuse! For this  
 
reason, commercial resistors are rated according to the maximum power they can  
 
absorb; a resistor with a one watt rating is larger than one having a one-half watt  
 
rating because, for the same material, a greater surface area is needed to disperse the  
 
greater absorbed power into the environment.  
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     We can conduct a similar analysis of the instantaneous power for other circuit 
 
elements using the corresponding i-v characteristics.  The i-v characteristic for an 
 
ideal capacitor, C, is 
           
          (4.2) 
 
or, alternatively, 
           
          (4.3) 
 
 
so the instantaneous power absorbed by a capacitor  may be expressed in terms of 
 
the capacitance and either the current or voltage alone according to 
  
           
          (4.4) 
 
 

The derivatives and integrals appearing in these expressions make the evaluation of  

the instantaneous power absorbed by a capacitor somewhat more complicated than  

that for a resistor where only simple algebraic evaluations are required.  There is a  

more important implication, however.  The instantaneous power absorbed by a 

capacitor can be positive or negative.  As an example, suppose that the voltage is 

given by v(t) = Vm sin(2πft).  Let A = Vm.  

 Then, 
           
          (4.5) 
 
This indicates that the instantaneous power for a capacitor can be positive some of the  
 
time and negative at other times.  The interpretation is that the capacitor is absorbing  
 
power when p(t) > 0 and is delivering power when p(t) < 0.  An inductor can also 
  
absorb and deliver power, as you can discover by similar arguments using its i-v  
 
characteristic. 
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The energy, w(t1,t2), absorbed in a time interval (t1,t2) by the element in Figure 4.1  
 
is by definition  the integral of the instantaneous power over the interval (t1,t2), i.e., 

            
This energy is always positive for a resistor, but it can be negative for a capacitor and  
 
other two-terminal elements depending on the sign of p(t) and the interval of interest. 
 
     The energy in a time interval divided by the duration of this interval has the units  
 
of power and is termed the average power,  PAVE, over the interval.  Thus, 
 
           
 
 
4.3.2   Power and Energy for Periodic Waveforms 
 
Now we will examine the situation when the voltage and current waveforms are both  
 
periodic functions of time.   To do this, let us reconsider the element of Figure 4.1.  If 
  
this element is linear, so that the principle of superposition holds, and it is time- 
 
invariant, so that its properties do not change with time, and if the voltage waveform 
  
v(t) is a periodic, sinusoidal function of time, then the current waveform i(t) is also a 
 
periodic, sinusoidal function of time with the same frequency as the voltage.  That is,  
 
if v(t) is of the form A sin(2πft), then i(t) will be of the form B sin(2πft + θ). Thus, the 
 
frequency  f  is the same, but the amplitude and phase may be different depending on  
 
the properties of the element.  For example, B = AR and θ = 0 for a resistor, and  
 
B = 2πfCA and θ  = π/2 for a capacitor, as may be seen from the i-v characteristics for 
  
these elements. 
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      More can be said when the element is both linear and time-invariant and the 
 

 voltage waveform is a periodic function of time.  To do so, we will introduce the  
 
concept of a Fourier series expansion, which can be applied to any periodic  
 
waveform.  Recall that a waveform x(t) is periodic if x(t ± nT) = x(t) for all t.  The 
 
smallest  such T that satisfies this relationship is called the fundamental period.   
 
Through the investigation of heat-flow problems, French mathematician Jean Baptiste  
 
Fourier (1768 - 1830) discovered that a periodic function can be represented by  
 
an infinite sum of harmonically related sinusoids.  That is, the period of any sinusoid  
 
in the infinite series is an integral multiple, or harmonic, of the fundamental period T  
 
of the periodic waveform.  So, given that v(t) is periodic with fundamental period T,  
 
then v(t) can be expressed as a Fourier series according to 
 
 
 
 
 
where f0 = 1/T is the fundamental frequency, and fn = nfo, the integral multiple of  f0,  
 
are known as the harmonic frequencies (or simply harmonics) of v(t).  The  
 
coefficients an and bn are given by 
           
           (4.9) 
 
and, for n ≥ 1, 

           
 
           
            (4.11) 
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In examining the equation for a0, note that this value is simply the average value of 
 
 the waveform v(t). 
 
      We can make a number of general comments about the use of the Fourier series  
 
expansion.  The first concerns the question of what conditions, if any, must be  
 
satisfied by the periodic waveform v(t) in order for it to have a convergent Fourier  
 
series.  The precise mathematical answer to this question is somewhat complicated,  
 
but it is sufficient to say that all periodic waveforms of interest can be expressed in  
 
terms of a Fourier series.  That is, any periodic waveform that is generated by a  
 
physically realizable source will have a convergent Fourier series. 
 
      The second observation that one can make is that once v(t) is known and the Fourier  
 
coefficients (an, bn) have been calculated, the periodic waveform has effectively been  
 
decomposed into a dc source (a0) plus a sum of sinusoidal sources (an, bn).  This fact  
 
has an important implication and is the reason why the Fourier series is an  important   
 
tool in circuit analysis.  Since the waveform v(t) is driving a linear circuit, one  
 
can use the principle of superposition to find the steady-state response.  That is, one  
 
calculate the response to each of the individual sinusoidal source in the Fourier series  
 
expansion, and then add all of these responses to get the total response.  In general,  
 
the best way to calculate the steady-state response to an individual sinusoidal source  
 
is to use phasor analysis, although other techniques could be used. 
 
      At this point, one may be concerned about the feasibility of calculating the  

response of a circuit to a periodic waveform using this method.  After all, in general, 

a Fourier series will have an infinite number of sinusoidal terms, which in theory 

could lead to an infinite summation that could not be solved analytically.  However, 

in practice this  is  not  as  severe  a  limitation  as  it  might  seem.  The coefficients  
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of a Fourier series,  an and bn, usually decrease rapidly as n increases, so that in 

practice one need only consider the first few terms to obtain reasonable accuracy.   

Furthermore, through the use of computers, one can calculate as many terms as are  

needed to achieve the desired accuracy. 

      As a final observation, note that the method of finding the steady-state response to  
 
a periodic signal is straightforward and involves no new techniques of circuit  
 
analysis.  However, as was briefly noted in the above paragraph, this method of  
 
circuit analysis does have some drawbacks.  For one thing, it produces the Fourier  
 
series representation of the steady-state response, with the actual shape of the  
 
response being unknown.  And again, as noted above, the actual response can only be  
 
estimated by adding a sufficient number of terms.   Yet, despite its drawbacks, this  
 
method can produce useful quantitative results, and it introduces a conceptual way of  
 
thinking about the problem that will be important in analyzing more complex  
 
systems. 
 
       Now let us return to the circuit element in Figure 4.1 and again assume that this  
 
element is linear and time invariant and that the voltage waveform is a periodic  
 
function of time.  Since a periodic waveform can be expressed as a linear  
 
combination of harmonically related sinusoids by using a Fourier series expansion  
 
and since the element is linear and time invariant, it follows that the current will also  
 
be a linear combination of harmonically related sinusoids, each having the same  
 
frequency as the  corresponding harmonic of the voltage waveform, but having  
 
a different amplitude and phase.  This implies that the current waveform will also be a  
 
periodic function of time with exactly the same period as the voltage waveform.   
 
Moreover, since the instantaneous power is the product of two waveforms with the  
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same  period,  it  too  will  be  a  periodic  waveform  with  the  same period, although 
 
its fundamental period may differ from the fundamental period of the current and  
 
voltage waveforms.1 

 
     Because of these reasons, it is both natural and common with periodic waveforms  
 
to select an interval (t1, t2) of duration T = t2 – t1 equal to a period of the instantaneous  
 
power in the definition of the average power dissipated by a linear, time-invariant  
 
element.  It should be evident that the same average power is obtained for any period  
 
selected in forming this average, including the fundamental period or any integer  
 
multiple of it.  It is most common to use the period of the voltage or current  
 
waveform, which, depending on the element, may or may not be the same as the  
 
fundamental period of the instantaneous power.  The average power when the  
 
instantaneous power is periodic is, therefore, defined to be 

           
where T is any period and t0 is an arbitrary reference time.  Most commonly, T is 
 
selected to be the fundamental period of the voltage or current and t0 is selected to be  
 
zero. 
 
      The effective voltage (or current) is a frequently used parameter to describe  
 
periodic voltages (or currents).  The effective voltage VEFF associated with a periodic  
 
voltage v(t) equals that constant voltage that produces the same average power as the  
 
periodic  voltage  when  applied  to  a  resistor.   Since, for a resistor, p(t) = v2(t)/R, 
 
 
    1 Recall that a function x(t) is periodic with a period T if  x(t + T) = x(t) for all t.  The smallest such T is called 
the fundamental period.  Thus, for example, it is easily verified that for a sinusoidal voltage of frequency f (and 
therefore fundamental period, 1/f ), the instantaneous power absorbed by a resistor is still periodic with period 1/f, 
but now has a fundamental period of 1/(2f) . 
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this definition implies that  
 
 
 
where T is a period and t0 is any instant of choice.  Thus, for a periodic voltage 
 
 
 
 
Since the effective voltage is the square root of the time-averaged voltage squared,  
 
the term root-mean-square or RMS voltage, denoted VRMS, is also commonly used for  
 
this quantity, i.e., for a sinusoidal voltage, 
 
   VRMS  = VEFF.      (4.15) 
 
The effective and root-mean-square currents are defined in a similar manner. 
 
      A rather trivial but still interesting example in calculating the RMS value of a 
 
voltage waveform occurs for a constant voltage.  If v(t) =  V0, a constant for all time,  
 
then it is obvious for any choice of averaging time that the effective or RMS voltage  
 
is just V0 .  For a less trivial example, consider v(t) = A sin (2πft).  Selecting T = 1/f  
 
and t0 = 0, it is seen that the corresponding effective or RMS voltage is given by 
 
           .    
 
 
Using the double angle formula for the cosine function, this simplifies to 
           
 
 
 
 
Thus, the effective or RMS voltage for a sinusoidal voltage is approximately 70.7%  
 
of the peak voltage.  One must be careful when specifying a sinusoidal voltage or, 
 
for that matter, any voltage.  It is common practice to use the RMS voltage without  

specifically indicating this fact.  For example, the common voltage supplied to 

residences in North America by power companies is said to be 120 volts at 60 Hertz, 
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and this is the specification seen on light bulbs and household appliances.  This is the 

RMS value of the voltage with the peak voltage being approximately 170 volts. You 

can verify this by observing the voltage waveform at an electrical outlet with an 

oscilloscope, but do so with caution! 

At this point, it is worth discussing how to use the instruments in our laboratory to 

measure the RMS voltage for a periodic waveform.  When the DMM is set to the DC 

mode, then the DMM reading will be VDC, the average value or DC component of 

the signal.  When the DMM is set to the AC mode, then its reading will be VAC, the 

RMS value of the signal with the DC component removed.   

In order to see how the DMM performs this measurement, one can consider the 

equivalent circuit shown in Figure 4.2.  Essentially, this type of circuit is used in both 

the DMM and the oscilloscope to control the waveform being measured. 

 Figure 4.2: The circuit used to perform DC and AC coupling  
       in the oscilloscope and in the DMM.  

 
Consider DMM measurements first.  With the switch closed (DC Mode), the entire 

signal passes through to the DMM.  The DMM then averages the signal and, if this 

signal is periodic, it averages the signal value over one period.  With the switch open 

(AC Mode), Vin is connected to Vout through C.  This is a high-pass filter that blocks 

low frequencies.  Hence, it blocks the DC component of the signal since capacitance 

looks like an open circuit to DC voltages.  Thus, with the switch in the AC Mode, the 

DMM measures the RMS value of the signal with the DC component removed. 
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It can be shown that in order to calculate the effective or true RMS value of the 

input signal, i.e., the RMS value with the DC signal included, one must use the 

following formula:  

 
 
    Consider now the digital oscilloscope.  Referring again to Figure 4.2, with the 

switch closed (DC Coupling), the entire input signal vin passes through to the scope 

display.  However, with the switch open (AC Coupling), vin is connected to the scope 

display through C.  This is a high-pass filter that blocks low frequencies.  Hence, it 

blocks the DC component of the signal since capacitance looks like an open circuit to 

DC voltages.  Thus, with the switch in the AC Coupling position, the scope displays 

the input  signal with the DC component removed. 

     The final subject of this subsection is a very important result known as Parseval's 

equation, which relates the effective value of an arbitrary periodic voltage to the 

effective values of each harmonic in the Fourier series representation of the voltage.  

As before, let v(t) be an arbitrary periodic voltage with period T.  Then, using Fourier 

series expansion, v(t) can be represented as a linear combination of harmonically 

related sinusoids according to the formulas presented previously. By using these 

formulas, the square of the effective or RMS voltage corresponding to v(t) is  
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By interchanging the order of integration and summation, we obtain 
 
 
 
 
 
 
 
 
 
It follows from this equation that 
 
 
 
 
 
Let A0 = a0, An = an/√2, and Bn = bn/√2, which are the RMS values of the constant and  
 
sinusoidal terms in the Fourier series for v(t).  We then conclude that 
 
 
 
 
Thus, the square of the effective or true RMS value of a periodic voltage is the sum of 

the squares of the RMS values of each component in the Fourier series of that 

voltage.  Equation (4.22) is called Parseval’s equation. 

 
      There is yet another useful interpretation of Parseval’s equation.  Dividing by R 
 
yields 
 
 
 
 
which may be written as 
 
 
 
where 
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and, for n ≥ 1, 
 
 
 
 
In these equations, P0 is the average power dissipated by the zero-frequency com- 
 
ponent of the Fourier series and Pn is the power dissipated by the nth harmonic 
 
component.  Note that Pn contains the contribution of both the sine and cosine 
 
components at frequency fn = nf0 = n/T.  Thus, Parseval’s equation implies that 
 
the total average power dissipated in the resistor by a periodic voltage is the sum  
 
of the average powers dissipated by each harmonic component of the voltage. 
 
 
4.3.3    Power and Energy for Sinusoidal Waveforms 
 
Now suppose that the voltage waveform v(t) in Figure 4.1 is a sinusoidal function of 
 
time.  This is an important special case for a number of reasons, the most important 
 
of which is the fact that the power line voltage is sinusoidal; hence, knowledge of 
 
the behavior of power and energy in this case allows one to analyze such things 
 
as the amount of power required from the electric company to operate a particular 
 
device.  As in the case of periodic waveforms, if the element of Figure 4.1 is linear 
 
and time invariant and v(t) is a sinusoidal function of time, then i(t) will also 
 
be a sinusoidal function of time.  Therefore, we can write these two waveforms as 
 
follows: 
 
    v(t)  = Vm cos (ωt + θv )   (4.27) 
and 
    i(t)   = Im cos (ωt + θi ).   (4.28) 
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Since we are operating in the sinusoidal stead-state, we can choose any convenient 
 

reference for zero time.  Engineers have found it convenient when making power 
 
calculations to choose zero time to correspond to the instant of time when the  
 
current is passing through a positive maximum.  This reference system requires that 
 
we shift both the voltage and current by θi .  Thus, the above equations for v(t) and 
 
i(t) become 
 
 
   v(t) = Vm cos (ωt + θv - θi )    (4.29 
 
   i(t) = Im cos ωt  .     (4.30) 
 
 
The instantaneous power p(t) is simply the product of v(t) and i(t), and is given by 
   
 
   p(t) = VmIm cos (ωt + θv - θi ) cos ωt  .  (4.31) 
 
 

      In order to calculate the average power associated with sinusoidal signals, one 

can again use Equation (4.12).  However, rather than performing this integration  

directly using Equation (4.31), one can simplify the calculation by first expanding 

Equation (4.31) using the "cos α cos β" and "cos (α + β)" trigonometric identities, 

i.e.,  

 
 cos (ωt + θv - θi ) cos ωt =     cos (θv - θi) +    cos ( 2ωt +  θv - θ i) (4.32) 
 
and 
 
 cos ( 2ωt + θv - θi ) = cos (θv - θi ) cos 2ωt - sin (θv - θi ) sin 2ωt (4.33) 
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After expanding Equation (4.31) using Equation (4.32) and then simplifying the 
 

result using Equation (4.33) , the instantaneous power becomes 
 
   
 
 
 
 
 
Now, to compute the average power P, all we need to do is use Equation (4.12).  To 
 
perform this integration, recognize that the integral of either cos 2ωt or sin 2ωt over 
 
one period is zero.  Using this fact, the integration is trivial, and the average power 
 
is given by 
 
 
 
 
      Through careful study of Equation (4.34), we can note the following character- 
 
istics of the instantaneous power: 
 
(1)   The frequency of the instantaneous power is twice the frequency of the voltage 

or current.  This follows directly from the two double frequency terms on the 

right-hand side of Equation (4.34).  From this equation, also note that it is 

possible for the instantaneous power to be negative for part of each cycle, even 

if the network between the terminals is passive.  Recall that in a network that is 

completely passive, negative power implies that energy that has been stored in 

inductors or capacitors is now being extracted. 

(2)  If the circuit between the terminals is purely resistive, then the voltage and 

current will be in phase, i.e. θv = θi .  Thus, from Equation (4.34), the 

instantaneous power is given by 

  p(t) = VmIm/2 + VmIm/2 cos(2ωt).    (4.36) 
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Using Equation (4.35) with θv = θi, the instantaneous power becomes 
 

   p(t) = P + P cos (2ωt)  .   (4.37) 
 
 
This result is often referred to as the instantaneous real power  Examining this  
 
equation, we see that the instantaneous real power can never be negative, that  
 
is, power can never be extracted from a purely resistive circuit.  Furthermore,  
 
the average power (P) is often referred to as the "real power", which is a term  
 
used to describe power that is transformed from electrical to non-electrical  
 
form.  In the case of a resistor, this means thermal energy or heat. 

 
(3)       If the circuit between the terminals is purely inductive, the voltage will  
 

      lead the current by +90°, i.e., θv = (θi + 90°).  This means that θv - θi = +90°,  
 
      and Equation (4.34) for the instantaneous power becomes  
 
 
 
      
     Note that in this case, the average power is zero.  This means that, in a circuit  
 
     that is purely inductive, there is no transformation of energy from electrical  
 
     to non-electrical form. The instantaneous power in such a circuit oscillates  
 
     between the circuit and the source driving the circuit. When p(t) > 0, the  
 
     energy is being stored in the magnetic fields associated with the inductor, and  
 
     when p(t) < 0, energy is being extracted from the magnetic fields associated  
 
     with the inductor.  
 

(4)  If the circuit between the terminals is purely capacitive, the voltage  
 

    will lag the current by 90°, i.e., θv = (θi - 90°).  This means that θv - θi = -90°,  
 

    and the equation for the instantaneous power reduces to 
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 The average power is again zero in this case, so there is no transformation of 
 
 energy from electrical to non-electrical form.  The energy oscillates between 
 
 the driving source and the circuit.  When p(t) > 0, the energy is being stored 
 
 in the electric fields associated with the capacitor, and when p(t) < 0, energy 
 
 is being extracted from the electric fields associated with the capacitor. 
 
      From the above discussion, we are led to the definition of a new term, namely, the 
 
reactive power.  The reactive power is the power associated with purely inductive or 
 
capacitive circuits.  The reactive power is denoted by Q and is defined as 
 

 
Using the definitions for P and Q, we can rewrite the expression for instantaneous 
 
power as      
 
 
   p(t) = P + P cos 2ωt - Q sin 2ωt  .      (4.41) 
 
 
      Some comments regarding real and reactive power are in order.  First, notice that 
 
both P and Q have the same dimension.  However, in order to distinguish between 
  
real and reactive power, we shall use the term "var" for reactive power.  The term 
 
"var" is an acronym for the phrase "volt-ampere reactive".  Second, note that the 

way our reference for zero time was chosen, i.e., the way we have written Equations 

(4.29) and (4.30), leads to Q being positive for inductors and negative for capacitors.  

In addition, the angle θv  - θI is referred to as the power factor angle.  Furthermore, the 

power factor (pf) and the reactive factor (rf) are defined as follows. 

    pf = cos (θv - θi )    (4.42) 
and 
    rf = sin (θv - θi )  .    (4.43) 
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Before completing this subsection, we will introduce the concept of complex 
 
power.  This concept is very useful when calculating the real and reactive power in 
 
circuits operating in the sinusoidal steady-state.  The complex power S is defined 
 
according to 
    S = P + jQ     (4.44) 
 
and the magnitude of the complex power, |S|, is defined as the apparent power. 
 
Dimensionally, S and |S| are the same as the real and reactive power, so in order 
 
to distinguish these two quantities from both the real and reactive power, we will  
 
use the term “volt amperes” as the units for both complex power and apparent power. 
 
     Now, if we substitute the definitions for P and Q into Equation (4.44), we obtain 
 
the following equation: 
    
    
 
 
This equation simplifies to 
 
 
      θv - θi     .   (4.46) 
 
 
Now recall that V  = Vm /θv  is the phasor representation of v(t), and I = Im /θi is  
 
the phasor representation of i(t) .  Clearly, if we examine Equation (4.46), we see 
 
that this equation can be written as  
 
      
 
 
 
That is, the complex power at a pair of terminals is one-half the product of the phasor 
 
voltage and the complex conjugate of the phasor current at these terminals.  This 
 
equation will prove useful when we want to calculate the real, reactive, and complex 
 
power at the terminals of an electrical element such as that shown in Figure 4.1. 
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4.4   Advanced Preparation 
 
 
The following advanced preparation is strongly recommended before coming to the 
 
laboratory: 
 
(1) Thoroughly read and understand the theory and procedures  

 
(2) Compute the theoretical values in the table shown in the Periodic Waveforms 

Chart. (Note:  This chart will be given to you as a handout by your instructor.) 

(3) In the circuit shown in Figure 4.4, determine the frequency f required to make R = 

XC , where XC is the capacitive reactance given by XC = 1/2πfC. 
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4.5 Experimental Procedure 
 
In this experiment you will be concerned with the measurement of RMS voltages 

across resistive elements.  The basic setup for this experiment is as follows.  A 

resistor R supplied by the instructor is to be connected across either a constant voltage 

from the DC power supply or a periodic voltage from the HP 33120A function 

generator, as indicated in Figure 4.3.  The temperature of the resistor TR can be  

  Figure 4.3:  Setup for Resistor Power Measurement 
 
 
measured using a temperature probe connected to a digital multimeter.  Some care is 

required to obtain consistent temperature measurements.  Try to place the probe tip at 

the same orientation and location on the resistor for each measurement.  When 

performing this experiment, be sure to turn the temperature probe off when you finish 

using it because it is battery powered.  Furthermore, do not touch the resistor when 

you are applying a voltage to it; it may become quite hot with some of the voltages in 

this experiment. 
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Now complete the following procedures: 
 
4.5.1 For the 1 W, 47Ω resistor, calculate the maximum voltage (Vmax) allowed by 

its power rating.  Check this value with your instructor. With this resistor 

connected to the DC power supply output as indicated in Figure 4.3(a), set the 

power supply level to 0 volt and measure the steady state temperature of the 

resistor (TR) in degrees Celsius with the temperature probe.  Repeat this 

measurement for integer voltage settings between 0 volt and Vmax volts.  For 

best results, take these measurements in order of ascending voltage, allowing 

the resistor temperature to stabilize at each voltage. 

4.5.2 With the resistor connected to the HP 33120A function generator output as 

indicated in Figure 4.3(b), adjust the function generator to produce each of the 

first six output waveforms shown on the Periodic Waveforms Chart (PWC) 

at a frequency of f1.   Use DC coupling on Channel 1 and AC coupling on 

Channel 2 of the oscilloscope.  Complete the following for each waveform: 

(a) Use the measure function to display Channel 1 frequency and RMS 

voltage.  Also display the RMS voltage for Channel 2.  Make a hardcopy of 

the display.  Copy the Channel 2 waveform on the PWC.   

 (b) Measure VDC and VAC across the resistor using the DMM and calculate  
 

VRMS, the effective or true RMS voltage.  Record these on the PWC.  
  
 (c) Record the steady-state temperature of the resistor TR on the PWC. 
 
4.5.3 Repeat steps (b) and (c) in Section 4.5.2 above using the waveform specified 

by your instructor for frequencies f2 = 0.5 f1, f3 = 2f1, and f4 = 5f1. 

4.5.4 Now add a capacitor of value C in series with the resistor R as shown in

 Figure 4.4.  Use the HP 33120A function generator as the voltage source v(t). 
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    Figure 4.4:  Series RC Circuit 

 
Complete the following for this circuit: 
 

(a) Determine the frequency f required to make ⏐XC⏐ = R, where XC is the  
 

capacitive reactance and is given by XC = -1/(2πfC).  Note that if you came to 

lab adequately prepared, you should have already completed this part! 

(b) Set the function generator to produce a sine wave with a peak-peak voltage 

of V2, a DC offset of V3, and the frequency you calculated in 4.5.4 (a) above.  

Using AC coupling for both signals, make a copy of the voltage across the 

resistor compared to the function generator voltage as illustrated in Figure 4.5, 

showing the magnitudes of v(t) and vR(t), the period T, and the phase angle ϕ . 

    Figure 4.5:  Oscilloscope Measurements 
 
 (c)  Measure VDC and VAC across the resistor and the resistor temperature 
 
 using the DMM. 
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4.5.5 Construct the circuit shown in Figure 4.6.  Apply a sine wave 

Figure 4.6:  Diode Circuit 

at a frequency of f5 from the function generator in order to produce the half 

wave rectified voltage across the resistor as shown as the last waveform 

at the bottom of the Periodic Waveforms Chart.  Now repeat steps (a), (b), and  

(c) as defined in Section 4.5.2 for this waveform. 

4.6 Report

4.6.1 Construct a table listing the resistor temperature TR and the DC voltage data 

that you took in Step 4.5.1.  Add a column that shows the calculated power 

absorbed by the resistor based on the measured value of the resistor. 

4.6.2 Plot the temperature versus voltage points from your tabulated data of Section 

4.6.1 above and sketch the "best-fit" nonlinear curve based on your data 

points.  This graph represents a Calibration Curve for your resistor and 

provides the temperature as a function of the DC voltage across the resistor. 

This DC voltage is by definition VEFF, the Effective ( True RMS) voltage. 
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4.6.3 Plot the temperature versus average power points from your data from Section 

4.5.1.  Develop a linear equation for is the best fit for your data using order 1 

for the polynomial, i.e., y = a0 + a1x.  Use a computer program or do this 

manually.  See Appendix I in Section 4.8 of this experiment.  Add a plot of 

this function to the temperature versus average power points plot to develop a 

calibration curve for the temperature versus power absorbed by your resistor. 

4.6.4 Calculate the Effective (True RMS) voltage values using Equation (4.14) for 

each of the periodic waveforms on the Periodic Waveforms Chart (PWC) as 

specified by your instructor.  Include detailed calculations in your report. 

4.6.5 Calculate the first 15 Fourier series coefficients for the periodic waveforms 

specified by your instructor.  Include detailed calculations in your report.  

4.6.6 Use Parseval’s equation with 3, then 5, and finally 7 nonzero harmonic 

coefficients (n ≥ 2) to predict the Effective (True RMS) Voltage and the 

resulting average power for each of the waveforms on Periodic Waveforms 

Chart as specified by your instructor.  Also, calculate % Error for each of 

the three values of VEFF to compare your predictions with the 

corresponding theoretical average power obtained in 4.6.4 above. 

4.6.7 Present your PWC showing the data obtained in Sections 4.5.2 and 4.5.5.  Be 

sure it includes the following for each waveform: the AC coupled waveform 

as well as the theoretical (T) and measured (M) values of VDC, VAC, VEFF and 

TR.  Note that the theoretical TR is obtained from the Calibration Curve using 

the theoretical VEFF.  
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4.6.8 Based on your data from Section 4.5.2 for each of the periodic waveforms, 

construct a table that indicates VEFF, the Effective (True RMS) Voltage, 

obtained from the following: (1) the theoretical VEFF, (2) VEFF obtained using 

the DMM measurements, (3) the RMS voltage shown on Channel 1 on the 

scope and (4) the resistor calibration curve based on measured temperature. 

4.6.9 Construct a table similar to the one described in Section 4.6.8 that compares 

the average power absorbed by the resistor using your (1) temperature versus 

power curve, (2) VEFF calculated from the DMM measurements, (3) VEFF from 

your theoretical calculations, and (4) the RMS voltage shown on Channel 1. 

4.6.10 Determine the percent error in the measured results presented in the above two 

tables, assuming that calculated values are correct.  In other words, for each 

waveform, you should calculate percent error for the following four 

quantities: (1) the RMS voltage obtained from the temperature versus voltage 

curve, (2) the RMS voltage obtained from the DMM measurements, (3) the 

average power obtained from the temperature versus power curve, and (4) the 

average power obtained from the DMM measurements.  Comment on the 

results.  How well do your results agree with the calculated values?  Identify 

those variables that could introduce errors into your measurements.  

4.6.11 Present the data that you took in Section 4.5.2 and 4.5.3 in tabular form.  For 

each frequency, give the following information: resistor temperature (TR), 

VEFF determined from both the DMM readings and the temperature versus 

voltage curve, and the average power determined from both the DMM 

readings and the temperature versus power curve.  Determine if the RMS 

voltage and average power change as a function of frequency. 
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4.6.12 Consider the circuit shown in Figure 4.4.  Since the circuit is linear and time 

invariant, recall that it follows that a signal generator voltage of the form  

v(t) = A sin (2πft ) will cause a current of the form i(t) = B sin (2πft + ϕ ), 

where the magnitude B and the phase angle ϕ depend on R, C, A, and f.  

Analyze the circuit to determine B and ϕ in terms of R, C, A, and f.  Also, 

show mathematically that the average power absorbed by the RC series circuit 

is (AB/2) cos ϕ .  You may not use Equation (4.35) to obtain this result.  (Hint: 

begin with Equation (4.12) and perform the integration. 

4.6.13 Show your calculations for determining in Section 4.5.4 (a) the frequency f 

that was required to make ⏐XC⏐ = R, where XC = -1/(2πfC).  Assuming a sine 

wave v(t) with A = V2/2, what will be the values of B in amps and ϕ in degrees 

for this value of f ?  Finally what will be the value of vR(t)? 

4.6.14 Present the copy of the voltage vR(t) across the resistor compared to the 

function generator voltage v(t) that you made in Section 4.5.4 (a).  Compare 

your measurements with the results of the calculations performed in Sections 

4.6.12 and 4.6.13. 

4.6.15 Present your measurements for TR , VDC, and VAC that you took in Section 

4.5.4.  Determine the average power absorbed by the resistor from (1) your 

calibration curve and (2) your DMM measurements.  Compare these to the 

calculated value derived in Section 4.6.12above. 

4.6.16 Using the values of B and ϕ that you calculated in 4.6.13 above, answer the 

 following questions: 

(a) What is the peak value of the instantaneous power delivered by the 

source v(t) ? 
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(b)     What is the complex power ? 

(c)     What is the reactive power ? 

(d)     What is the power factor and the reactive factor of the RC load ? 

4.6.17 Present your measurements for the temperature of the resistor, VDC, and VAC

that you took in Part 4.5.5.  Determine the RMS voltage and average power 

absorbed by the resistor using (1) your calibration curve and (2) your DMM 

measurements, and compare these values to the calculated values using 

the formulae for the RMS voltage determined in Section 4.6.7 on the PWC. 

4.7 References
1. Nilsson, J. W., Electric Circuits, (6th ed.), Prentice Hall, Upper Saddle River,

New Jersey 2001 (see Chapter 9 for sinusoidal steady-state analysis, Chapter 10
for sinusoidalsteady-state power calculations, and Chapter 16 for Fourier series).

2. Straight, P., Probability and Statistics with Applications (see Chapter 14,
pages 438-449 for polynomial fitting).

4.8   Appendix I:  Fitting Polynomials to  
 Experimental Data
Suppose that {xi, yi; i = 1, 2, 3, ...., n ) represents n measured data points.  For this 

experiment, xi is a temperature value, yi is the corresponding average power value, 

and the ith measurement of these quantities corresponds to the results obtained with 

a particular setting of the parameters of the function generator.  A plot of temperature 

-power data pairs will have a scatter diagram that might look like the data points 

shown in Figure 4.7.  These points may somewhat follow along some smooth 

function, but there will be deviations due to various sources of measurement error, 

including imperfect readings of oscilloscope traces, quantization errors in digital 

multimeters, and fundamental instrument limitations. 
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   Figure 4.7:  Fitting a Polynomial to Data 
 
     It is often desired to fit a simple function to data in order to have an equation that 
 
describes them.  Polynomials, sums of exponentials, and sums of sinusoids are  
 
examples of functions that might be used for the fit.  Here we examine the use of  
 
polynomials.  Thus, let y(x) be a polynomial of degree m, 
 
  y(x) = a0 + a1x + a2x2 + ⋅⋅⋅⋅⋅ + amxm .    (4.48) 
 
A graph of such a polynomial for m = 1 (i. e., a straight line) is shown superimposed  
 
on the data in Figure 4.7. 
 
      The objective in fitting a polynomial to some given data is to select the degree of 

the polynomial m and the polynomial coefficients {a0, a1, ⋅⋅⋅⋅ , am ) so that the 

polynomial is close in some sense to all the data points.  A common approach is 

to’eyeball’ the data to select the polynomial degree; if the data seem to follow a 

straight line closely, then m = 1 would be selected; if the data depart somewhatfrom a 

straight line, then perhaps m = 2 would be selected, etc.  Keeping the degreelow is 

desirable because this keeps the number of coefficients to be determined low,but if 

the degree is too low, the fit may not be accurate enough.  For a given degree, the 

coefficients are selected to minimize some measure of the errors, with the mean 
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square error being a common choice.  This mean square error is defined by 

where 
  y(xi) = a0 + a1xi + a2xi

2 + ⋅⋅⋅⋅ + amxi
m     (4.50) 

 
is the polynomial evaluated at x = xi .  By taking the derivatives of the mean square 
 
error with respect to each of the polynomial coefficients and setting the results to 
 
zero, the following set of linear equations for minimizing the mean square error is 
 
obtained     

 
where  
             
 
and 
     
 
 
 
 
These last two quantities are called the moments of the data.  The procedure, then, is  
 
to calculate the moments of the data using the measured values and then to solve  
 
these linear, algebraic equations for the coefficients of the best-fit polynomial. 
 
     As an example, for a straight line fit, m = 1, and y(x) = a0 + a1x .  The coefficients  
 
for the best straight line fit satisfy the linear equations: 
 
    a0 + < x > a1 = < y >      (4.56) 
 
   < x > a0 +  < x2 > a1 = < yx >  .   (4.57) 
 
The square root of the minimum value of the mean square error that results is called  
 
the minimum RMS error. 
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