1. Determine the reactions at the roller A and pin B. Show the direction each force acts with respect to a horizontal line. **Free-Body-Diagram required.**
2. The boom AC is supported at A by a ball-and-socket joint and by two cables BDC and CE. Cable BDC is continuous and passes over a frictionless pulley at D. Calculate the tension in the cable and the x, y, z components of the reaction at A if a crate, having a weight of 100 lbs, is suspended from the boom. **Free-Body-Diagram required.**
3. Determine the reactions at the wall A and the rocker C. The two members are connected by a pin at B. **Free-Body-Diagrams required.**
4. Determine the force in members AB, AH, FC, and GF using whatever method or methods you wish. Indicate whether the members are in tension or compression. **Free-Body-Diagrams required.**