1. The uniform 5-m bar with a mass of 100 kg is hinged at O and prevented from rotating in the vertical plane beyond the 30° position by the fixed roller at A. Calculate the magnitude of the total force supported by the pin at O.

![Diagram of a 5-m bar with a mass of 100 kg hinged at O and prevented from rotating in the vertical plane beyond the 30° position by a fixed roller at A. The bar is 1 m wide and 0.5 m high.]
2. Calculate the forces induced in members GH, HF, ED and AC for the crane truss when it lifts an 1800-kg car. The radius of each pulley is 750 mm. Indicate whether the members are in tension or compression.
3. Calculate the x and y coordinates of the centroid for the area shown. Use the coordinate system given.
4. The uniform horizontal boom OD is fastened by a ball-and-socket at point O and by ropes AC and AB. If the boom weighs 3.6 kN and is subjected to the 8 kN force shown, determine the tension in each rope and the reaction at point O.

Diagram Description:
- The boom is horizontal with point O at the bottom.
- Ropes AC and AB are connected to points O and D.
- Point B is 3.6 m from O.
- Point C is 2.7 m from point O.
- A force of 8 kN is applied at point D.

Mathematical Analysis:
To determine the tension in each rope, we can use the principles of equilibrium. The forces must balance out in both the x, y, and z directions.

Reaction at O:
- The reaction components in the x, y, and z directions can be calculated using the forces acting on O.
- The horizontal reaction R_x can be found by balancing forces in the x and y directions.
- The vertical reaction R_y is determined by balancing the forces in the z direction.

Solution Steps:
1. **Equilibrium Equations:**
 - $\sum F_x = 0$: $R_x - 8 = 0 \\
 - \sum F_y = 0$: $R_y - 3.6 = 0 \\
 - \sum F_z = 0$: $T_{AC} + T_{AB} - 3.6 = 0$
2. **Solve for R_x and R_y:**
 - $R_x = 8$ kN
 - $R_y = 3.6$ kN
3. **Solve for the tensions T_{AC} and T_{AB}:**
 - $T_{AC} + T_{AB} = 3.6$ kN

Final Solution:
- The tension in rope AC and AB can be found by further analysis or using trigonometric methods based on the angles and forces involved.