Lecture 13
Fundamental Memory Concepts (Part 1)

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/
Memory/Library Analogy

- Desk (can hold one book)
- Book Shelf (can hold a few books)
- Library (can hold many books)
- Warehouse (long-term storage)
Scenario 1: Desk + Library, No Bookshelf “Cache”

avg. latency: 40 minutes

avg. throughput (inc. reading): 1.2 books/hour
Scenario 1: Desk + Library with Bookshelf “Cache”

avg. latency: <20 minutes
avg. throughput (inc. reading): 2 books/hour
“Book Storage Hierarchy”

• **Storage Blocks**
 - bookshelf: low latency, low capacity
 - library: high latency, high capacity
 - warehouse: very high latency, very high capacity

• **Bookshelf acts as a small “cache”**
 - cache hit: book on the shelf
 - cache miss: need to go to library

• **Exploit access pattern to improve access time**
 - temporal locality: if we access a book once we are likely to access the same book again in near future
 - spatial locality: if we access a book on a given topic we are likely to access other books on the same topic in the near future
Memory Structure and Technology

- Register Files
Memory Structure and Technology

- SRAM (cache, on-chip)
Memory Structure and Technology

- DRAM
Memory Structure and Technology

- DRAM

Adapted from [Foss, "Implementing Application-Specific Memory." ISSCC'96]
Memory Structure and Technology

- **Disk**
 - magnetic hard drives require rotating platters resulting in long random access times which have hardly improved over several decades

- **Flash**
 - solid-state drives using flash have 100x lower latencies, but also lower density and higher cost
Memory Technology Trade-offs

- **Latches & Registers**
 - Low Capacity
 - Low Latency
 - High Bandwidth (more and wider ports)

- **Register Files**

- **SRAM**

- **DRAM**

- **Flash & Disk**
 - High Capacity
 - High Latency
 - Low Bandwidth
Latency Numbers:
every programmers (architect) should know

<table>
<thead>
<tr>
<th>Latency Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 cache reference</td>
<td>1 ns</td>
</tr>
<tr>
<td>Branch mispredict</td>
<td>3 ns</td>
</tr>
<tr>
<td>L2 cache reference</td>
<td>4 ns</td>
</tr>
<tr>
<td>Mutex lock/unlock</td>
<td>17 ns</td>
</tr>
<tr>
<td>Main memory reference</td>
<td>100 ns</td>
</tr>
<tr>
<td>Send 2KB over commodity network</td>
<td>250 ns</td>
</tr>
<tr>
<td>Compress 1KB with zip</td>
<td>2 us</td>
</tr>
<tr>
<td>Read 1MB sequentially from main memory</td>
<td>9 us</td>
</tr>
<tr>
<td>SSD random read</td>
<td>16 us</td>
</tr>
<tr>
<td>Read 1MB sequentially from SSD</td>
<td>156 us</td>
</tr>
<tr>
<td>Round trip in datacenter</td>
<td>500 us</td>
</tr>
<tr>
<td>Read 1MB sequentially from disk</td>
<td>2 ms</td>
</tr>
<tr>
<td>Disk random read</td>
<td>4 ms</td>
</tr>
<tr>
<td>Packet roundtrip from CA to Netherlands</td>
<td>150 ms</td>
</tr>
</tbody>
</table>

find updated at https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
Cache Memories in Computer Architecture

- Three key questions
 - how much data is aggregated in a cache line
 - how do we organize multiple lines in cache
 - what data is replaced to make room for new data when cache is full

- Categorizing misses
- Write policies
- Multi-level cache
Typical Data Access Pattern
instruction vs data access, temporal vs spatial locality
Lab3: Design a Cache

- Direct-mapped cache (baseline)
- Two-way associative cache
- Write-through vs write-back
- Test bench

- Due on 2/22 at 2:30pm
Questions?

Comments?

Discussion?
Acknowledgement

Cornell University, ECE 4750