
Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Lecture 9
Fundamental Processor Concepts

Instruction Set Architecture (ISA)

•  Contract between software and hardware
–  representations for characters, integers, floating-point
–  integer formats can be signed or unsigned
–  floating-point formats can be single or double precision
–  byte address can be ordered within a word as either

little or big-endian

–  Registers: general-purpose, floating-point, control
–  Memory: different addresses for heap, stack, I/O

2

Instruction Set Architecture (ISA)

•  ISA Type
–  Register: operand stored in registers
–  Immediate: operand is an immediate in the instruction
–  Direct: address of operand in memory is stored in

instruction
–  Register Indirect: address of operand in memory is

stored in register
–  Displacement: register indirect, addr is added to

immediate
–  Autoincrement/decrement: register indirect, addr is

automatically adjusted
–  PC-Relative: displacement is added to the program

counter

3

Instruction Set Architecture (ISA)

•  ISA Category
–  integer and floating-point arithmetic instructions
–  register and memory data movement instructions
–  control transfer instructions
–  system control instructions

•  ISA Style
–  opcode, addresses of operands and destination, next

instruction
–  variable length vs. fixed length

4

MIPS32 ISA

•  how is data represented?
–  8-bit bytes, 16-bit half-words, 32-bit words
–  32-bit single-precision, 64-bit double-precision floating

point

•  where can data be stored?
–  232 32-bit memory locations
–  32 general-purpose 32-bit registers, 32 SP (16 DP)

floating-point registers
–  FP status register, program counter

5

MIPS32 ISA

•  how can data be accessed?
–  register, register indirect, displacement

•  what operations can be done on data?
–  large number of arithmetic, data movement, and

control instructions

•  how are instructions encoded?
–  fixed-length 32-bit instructions

6

MIPS32 Instruction Example

7

PARC ISA

•  Subset of MIPS32 with important differences
–  only little-endian, very simple address translation
–  no hi/lo registers, only 32 general purpose registers
–  multiply and divide instructions target general purpose

registers
–  only a subset of all MIPS32 instructions
–  no branch delay slot

•  PARCv1
–  very small subset suitable for examples
–  addu, addiu, mul
–  lw, sw
–  j, jal, jr
–  bne
–  mfc0, mtc0 (proc2mngr, mngr2proc), nop

8

PARC ISA

•  PARCv2
–  subset suitable for executing simple C programs

without system calls (i.e., open, write, read)
–  subu, and, or, nor, xor, andi, ori, xori, lui
–  slt, sltu, slti, sltiu, sll, srl, sra, srav, srlv, sllv
–  bgtz, bltz, bgez, blez
–  mfc0, mtc0 (stats_en, core_id, num_cores)

•  PARCv3
–  single-threaded and parallel programs with system calls
–  jalr - div, divu, rem, remu
–  lb, lbu, lh, lhu, sb, sh - movn, movz
–  amo.add, amo.and, amo.or, sync
–  syscall, eret - mtx, mfx, mtxr, mfxr
–  add.s, sub.s, mul.s, div.s, c.<cond>.s, cvt.s.w,

trunc.w.s
9

PARCv1 Assembly, Semantics, and Encoding

10

PARCv1 Assembly, Semantics, and Encoding

11

Processor Functional-Level Model

12

Transactions and Steps

•  Each instruction as a transaction
•  Executing a transaction involves a sequence of steps

13

Transactions and Steps

•  Each instruction as a transaction
•  Executing a transaction involves a sequence of steps

14

Simple Assembly Example

15

Processor/Laundry Analogy

•  Processor
–  instructions are “transactions” that execute on a processor
–  architecture: defines the hardware/software interface
–  microarchitecture: how hardware executes sequence of

instructions

•  Laundry
–  cleaning a load of laundry is a “transaction”
–  architecture: high-level specification, dirty clothes in, clean

clothes out
–  microarchitecture: how laundry room actually processes

multiple loads

16

Arch vs. µArch vs. VLSI Implementation

17

Processor Microarchitecture Design Patterns

18

Processor Microarchitecture Design Patterns

19

Lab2: Explore Integer Multiplier Designs

•  Single-cycle design
–  fixed-latency iterative multiplier
–  one-cycle multiplier

•  FSM
•  Pipelined
•  Design trade-offs

–  how does performance, area, and power relate

•  Due on 2/22 at 2:30pm

20

Questions?

Comments?

Discussion?

21

Acknowledgement

Cornell University, ECE 4750

22

