Lecture 9
Fundamental Processor Concepts

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Instruction Set Architecture (ISA) w

SIL.
o Contract between software and hardware
- representations for characters, integers, floating-point
- integer formats can be signed or unsigned
- floating-point formats can be single or double precision

- byte address can be ordered within a word as either
little or big-endian

- Registers: general-purpose, floating-point, control
- Memory: different addresses for heap, stack, 1/0

Instruction Set Architecture (ISA) w
SIL
e ISA Type
- Register: operand stored in registers
- Immediate: operand is an immediate in the instruction

- Direct: address of operand in memory is stored in
instruction

- Register Indirect: address of operand in memory is
stored in register

- Displacement: register indirect, addr is added to
immediate

- Autoincrement/decrement: register indirect, addr is
automatically adjusted

- PC-Relative: displacement is added to the program
counter

Instruction Set Architecture (ISA) w

SIL.
e ISA Category
- integer and floating-point arithmetic instructions
- register and memory data movement instructions
- control transfer instructions
- system control instructions

e ISA Style

- opcode, addresses of operands and destination, next
instruction

- variable length vs. fixed length

MIPS32 ISA W/

SIL.
e how is data represented?
- 8-bit bytes, 16-bit half-words, 32-bit words
- 32-bit single-precision, 64-bit double-precision floating
point
 where can data be stored?
- 232 32-bit memory locations

- 32 general-purpose 32-bit registers, 32 SP (16 DP)
floating-point registers

- FP status register, program counter

MIPS32 ISA \‘ZJ/

e how can data be accessed?
- register, register indirect, displacement

e what operations can be done on data?

- large number of arithmetic, data movement, and
control instructions

e how are instructions encoded?
- fixed-length 32-bit instructions

S ———————— .
MIPS R2K: 1986, single-issue, MIPS R10K: 1996, quad-issue,
in-order, off-chip caches, 2 um, out-of-order, on-chip caches, 0.35 pm,

8-15MHz, 110K transistors, 80 mm? 200 MHz, 6.8M transistors, 300 mm?

MIPS32 Instruction Example

31 26 25 21 20 16 15 0
ADDIU s rt immediate
001001
6 5 5 16
Format: ADDIU rt, rs, immediate MIPS32

Purpose: Add Immediate Unsigned Word
To add a constant to a 32-bit integer

Description: GPR[rt] « GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR 1.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp < GPR[rs] + sign_extend(immediate)
GPR[rt] &« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

PARC ISA W /

SIL
o Subset of MIPS32 with important differences
- only little-endian, very simple address translation
- no hi/lo registers, only 32 general purpose registers

- multiply and divide instructions target general purpose
registers

- only a subset of all MIPS32 instructions
- no branch delay slot

e PARCvV1

- very small subset suitable for examples

- addu, addiu, mul

- lw, sw

- J, Jal, jr

- bne

- mfc0, mtcO (proc2Zmngr, mngr2proc), nop

PARC ISA W /

SIL
e PARCvV2

- subset suitable for executing simple C programs
without system calls (i.e., open, write, read)

- subu, and, or, nor, xor, andi, ori, xori, lui

- slt, sltu, slti, sltiu, sli, srl, sra, srav, srlv, sllv
- bgtz, bltz, bgez, blez

- mfc0, mtcO (stats_en, core_id, num_cores)

e PARCv3
- single-threaded and parallel programs with system calls
- jalr - div, divu, rem, remu
- b, lbu, Lh, lhu, sb, sh - movn, movz
- amo.add, amo.and, amo.or, sync
- syscall, eret - mtx, mfx, mtxr, mfxr

- add.s, sub.s, mul.s, div.s, c.<cond>.s, cvt.s.w,
trunc.w.s

PARCv1 Assembly, Semantics, and Encoding

addu rd, rs, rt
R[rd] « R[rs] + R[rt]
PC « PC+4

addiu rt, rs, imm
R[rt] « R[rs] + sext(imm)
PC «+ PC+4

mul rd, rs, rt
R[rd] « R[rs] x R[rt]
PC + PC+4

lw rt, offset(rs)
R[rt] < M| R[rs] + sext(offset)]
PC «+ PC+4

sw rt, offset(rs)
M| R[rs] + sext(offset) | + R[rt]
PC « PC+4

6 5 5 5 5 6
000000 rs rt rd | 00000 | 100001
31 26 25 21 20 15 110 6 5

6 5 5 16
001001 rs rt offset
31 2 25 21 20 16 15

6 5 5 5 5 6
011100 rs rt rd | 00000 | 000010
31 2 25 21 20 16 15 11 10 6 5 '

6 5 5 16
100011 rs rt offset
31 26 25 21 20 15

6 5 5 16
101011 rs offset

31 26

25

ra
et

10

PARCv1 Assembly, Semantics, and Encoding

j targ 6 26
PC « { (PC + 4)[31:28], targ, 00 } 000010 targ
31 26 25
jal targ 6 26
R[31] «+ PC + 4; 000011 targ
PC « { (PC + 4)[31:28], targ, 00} = 26 25
jr rs 6 5 5 5 5 6
PC + R|rs] 000000 | rs | 00000 | 00000 | 00000 | 001000
31 26 25 21 XN 16 15 i1 10 6 5 (
bne rs, rt, offset 6 5 5 16
if (R[rs] != R[rt]) 000101 | rs rt offset

PC «+ (PC + 4 + (4 x sext(offset)) 2625 21X

>

15

Processor Functional-Level Model w
o

S]L

y, A4
w Program
3 Counter |
Q< I 1 [~ Instr — — Data —
=2h — Mem — Register — Mem —
jé — File ~]

» b
N\

Instruction and data memory y
usually combined into a
single unified memory

Instruction
Semantics

12

Transactions and Steps w
o

e Each instruction as a transaction
e Executing a transaction involves a sequence of steps

addu addiu mul 1lw sw j jal jr bne

Fetch Instruction

Decode Instruction

Read Registers
Register Arithmetic

Read Memory

Write Memory

Write Registers
Update PC

13

Transactions and Steps w

St
e Each instruction as a transaction

e Executing a transaction involves a sequence of steps

addu addiu mul 1lw sw Jj jal jr ©bne

Fetch Instruction v v v / v v v/
v v v/
v /
v

Decode Instruction v v
Read Registers v v
Register Arithmetic v v

NSNS

v
v
v

v
v
v
Read Memory v

Write Memory v

AN
AN
AN
N

Write Registers v
Update PC v v v v v v v

Simple Assembly Example

Static Asm Sequence Instruction Semantics

loop: 1w ri, 0(r2)

addu 1r3, r3, ri

addiu r2, r2, 4

bne rl, rO, loop

Worksheet illustrating processor functional-level model

PC Instr Mem Reg File Data Mem
voe 0 0 coe
0x1000| 1w rl, 0(r2) rl 0x2000 13
addu r3, r3, ril r2 0x2004 47
addiu r2, r2, 4 r3 0x2008 0
bne rl, r0, loop .o
oo 31 voe

Processor/Laundry Analogy w

Sit

e Processor

- instructions are “transactions” that execute on a processor

- architecture: defines the hardware/software interface

- microarchitecture: how hardware executes sequence of

instructions

e Laundry

- cleaning a load of laundry is a “transaction”

- architecture: high-level specification, dirty clothes in, clean
clothes out

- microarchitecture: how laundry room actually processes
multiple loads

16

Arch vs. pArch vs. VLS| Implementation W

ARM Architecture ARM VLSI Implementation

ALA ISA

R e Y o

AArcheA

NVIDIA Tegra 2

17

Processor Microarchitecture Design Patterns

Transaction
Steps

Washing
(30 min)

Drying
() (30 min)

m Folding
(30 min)

— e
J]] feoring,

Four Types of Transactions

0hr lh 2hr Transaction
ettt Latency
: Vo ,

ﬁon: ; 5 O m Bﬂ 20hr Anne requires all four steps

Ben's P hr Ben is messy, leaves unfolded

Load O 1.0 clothes in his laundry basket

Cathy’s m Cathy does not have a bureau
15 hr y ’

Load O leaves folded clothes in basket

E;: ;’s /("_:)% m LJ 20hr Dave requires all four steps

Fixed Time Slot Laundry (Single-Cycle Processors)

7pm 8pm 9pm 10pm

Ilpm 12am

[I I 1
L]

fam 2am 3am

Anne's
Load 5:]
Ben's

Load
Cathy's
Load

Dave's
Load

im \ I

Q

1
-
=
=

18

Processor Microarchitecture Design Patterns

Transaction Four Types of Transactions
Step S 0hr lh 2hr Transaction
ettt Latency
Washi : 7 |
(30as mur:;; éon: ; 5 O m B 20 hr Anne requires all four steps
Drying Ben's f Ben is messy, leaves unfolded
O} (30 min) Load 9! LOhr (othes in his laundry basket
m Folding Cathy's ® m 15hr Cathy does not have a bureau,
(30 min) Load leaves folded clothes in basket
m (S;grrlnng) E::; s O m |__| 2.0 hr Dave requires all four steps
Variable Time Slot Laundry (FSM Processors) Pipelined Laundry
7pm 8pm 9pm 10pm Ilpm 12am lam 7pm 8pm 9pm 10pm
s JI B Jo &0
Load | i) i L]
Ben's = —
Lond T Ad

cas 99a ~
s’ i i

19

Lab2: Explore Integer Multiplier Designs W

Single-cycle design
- fixed-latency iterative multiplier
- one-cycle multiplier

e« FSM
Pipelined

Design trade-offs
- how does performance, area, and power relate

Due on 2/22 at 2:30pm

Questions?

Comments?

Discussion?

21

Acknowledgement

Cornell University, ECE 4750

22

