Lecture 6
Sequential Circuits and Memory

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/
Outline

Combinational Logic

Interconnect

Sequential State
SR Latch

- Basic NOR latch

\[Q \]

\[\overline{Q} \]

\[S \] (set)

\[R \] (reset)

\[0 \]

\[1 \]

\[t_{pd} \]

No change

not allowed

unstable
Other SR Latches

- Clocked

- NAND SR latch
D Latch

• Truth table

SR latch:

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q⁺</th>
<th>Q⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>hold,</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

D latch

<table>
<thead>
<tr>
<th>D</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Level-Sensitive Latch
Flip-Flop

- **Latch timing issue**
 - transparent when $C = 1$
 - state should change only once every new clock cycle

- **Master-slave flip flop**
 - break feedthrough
Flip-Flop Timing Issue

- 1' catching

C

S

R

Y

Master out

Q

Slave out

Master active

Slave active

Glitch

1' catching

wrong output should have been 0
Edge-Triggered D Flip-Flop (DFF)

- Why edge trigger?
- D replace S and R input
Edge-Sensitive Flip-Flop
Outline

Sequential Circuits

Timing Analysis

Memory
Timing in Digital Logic

- Setup time
- Hold time
Timing in Digital Logic

- Launch edge and latch edge
Timing in Digital Logic

- Data arrival time: using launch edge

![Timing Diagram]

Data Arrival Time = launch edge + $T_{clk1} + T_{co} + T_{data}$

<table>
<thead>
<tr>
<th>Tclk</th>
<th>Clock Skew</th>
<th>Tco</th>
<th>FF Clock- > Output</th>
<th>Tdata</th>
<th>Logic Delay</th>
</tr>
</thead>
</table>
Timing in Digital Logic

- Clock arrival time

Clock Arrival Time = latch edge + T_{clk2}
Timing in Digital Logic

- Data required time (setup): latch edge

Data Required Time = Clock Arrival Time - T_{su} - Setup Uncertainty
Timing in Digital Logic

- Data required time (hold): next launch = latch

Data Required Time = Clock Arrival Time + T_h + Hold Uncertainty
Timing in Digital Logic

• Setup slack

Setup Slack = Data Required Time – Data Arrival Time

Positive slack
Timing requirement met

Negative slack
Timing requirement not met
Timing in Digital Logic

- Hold slack

Hold Slack = Data Arrival Time – Data Required Time

Positive slack
Timing requirement met

Negative slack
Timing requirement not met
Static Timing Analysis

- Timing Model and Timing Constraint
- Arrival Time (AT) and Required Time (RT)
Outline

Sequential Circuits

Timing Analysis

Memory
Static RAM

- **Applications**
 - CPU register file, cache, embedded memory, DSP

- **Characteristics**
 - 6 transistor per cell, other topologies
 - no need to refresh
 - access time ~ cycle time
 - no charge to leak
 - faster, more area, more expensive
SRAM Operation

• Standby
 - word line de-asserted

• Read
 - precharge bit lines
 - assert WL
 - BL rise/drop slightly

• Write
 - apply value to BL
 - assert WL
 - input drivers stronger
SRAM Architecture

Column Drivers

n-bit word

Bitcell Array

Address Decoder

Bitlines for bit n

Sense Amplifiers

source: semiengineering.com
Multi-Bank Layout

source: semiengineering.com
Questions?

Comments?

Discussion?
Design Tool Tutorials

- Standard-cell based design flow
Design Tool Tutorials

- **Functional Simulation**
 - tool: Synopsys VCS
 - simulate your HDL (eg. Verilog) code to verify functionality

- **Logic Synthesis**
 - tool: Synopsys Design Compiler (DC)
 - convert/synthesize behavioral/RTL level HDL to gate-level netlist (i.e. connectivity list)

- **Physical Design (Place & Route)**
 - tool: Cadence Encounter
 - given the gate-level netlist, place and route the design to complete an IC chip in its final physical form
Acknowledgement

Cornell University, ECE 5745