Experiment Results

-Experiment 1 (Cursor Task)

The Cursor Task performed for average of 100 trials for each specific motion. Since we used the linear classifier set up by Colleen, this classifier didn't find the specific signals that we wanted in general. The R^2 values are low that we can't use it for real-time EEG data collection.

Movement	Highest Signal on	Magnitude of the Highest	at Frequency	Other Notable Signals on
	Channel (#)	Signal(r^2 Value)	(Hz)	Channel (#)
Shoulder Rotation (DoHyun)	3	6.3*10^-3	26-28	5,10,14
Shoulder Rotation (Tom)	7	.06	10-12	-
Ankle Tapping (DoHyun)	14	9.6*10^-3	22-24	7
Ankle Tapping (Tom)	8	.012	20-22	9
Wrist Twisting (DoHyun)	1	16*10^-3	24-30	-
Wrist Twisting (Tom)	1	.12	20-24	3

Experiments 1 (Cursor Task) //Average of 100 Trials

-Experiment 2 (LR StimPresentation)

In these experiments, we found several interesting EEG signals properties. From the EEG data of different types of the Bicep Curling, we set up the hypothesis that constant holding action will generate higher R^2 values than repetitive actions. The Wrist Twisting Experiment shows the possible symmetrical EEG signal generations in Brain. Also Active Force generation seems to generate higher EEG R^2 values (might be caused by pain and fatigued muscle afferent neural signals). These series of experimental

data shows higher R^2 values for left side movements in general. Since Tom and I are both right handed, we set up the hypothesis that motions for undeveloped side of brain or muscles will generate higher EEG data R^2 values.

Movement]	Left vs. Pause	e		Right v	vs. Paus	e		Left vs. Right			
	Channel	Magnitude	Frequency	Channel	Mag	nitude	Freque	ncy	Channel	Magnit	ude	Frequency
	(#)	(r^2 Value)	(Hz)	(#)	(r^2 \	Value)	(Hz))	(#)	(r^2 Va	lue)	(Hz)
Finger	14	.22	26-28	14		25	18-20	0	5	.15		34-36
(DoHyun)												
Finger (Tom)	12	.3	22-24	12		33	22-24	4	12	.1		62-64
Bicep Curling	5	.26	4-6	2		24	8-10)	9	.12		46-48
Twice												
Bicep Curling	14	.21	28-30	14		22	30-32	2	13	.1		20-22
Once												
Bicep Curling	5	.45	4-6	5		31	4-6		7	.13		0-2
Up												
Tongue (Tom)			Twisting						Rolling back			
	Channel (#)	Magnitude	(r^2 Value)	Frequency	(Hz)	Chan	nel (#)	Mag	gnitude (r^2	2 Value)	Free	quency (Hz)
	9		.22		20-22		5		.35			0-2

Experiments 2 (LR StimPresentation) Data A

	Experiments 2 (LR StimPresentation) Data B												
Movement		Left vs. Paus	se	-	Right vs. Paus	se	Left vs. Right						
	Channe	Magnitude	Frequency	Channel	Magnitude	Frequency	Channel	Magnitude	Frequency				
	1 (#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)				
Bicep Lifting	5	.17	6-8	5	.2	6-8	13	.14	28-30				
Up													
Fist Squeezing	9	.33	26-28	10	.3	8-10	3	.12	44-46				
Firmly													
Fist Squeezing	8	.16	34-36	14	.16	28-30	8	.09	18-20				
Softly													
Wrist Twisting	7	.26	26-28	10	.25	34-36	10	.21	46-48				
and Hold													

(** Symmetry)

Wrist Rotation	14	.31	20-22	14	.16	18-20	5	.19	28-30
Open Hand									
Wrist Rotation	10	.51	10-12	10	.22	10-12	10	.24	10-12
with Fist									

DoHyun Kim Bicep Curling Up (Left) Tom Finger Connection (Right) DoHyun Kim Wrist Twist + Fist Squeezing (Left)

DoHyun Kim Wrist Twisting (Left Hand vs. Right Hand) showing symmetrical EEG composition

DoHyun Kim Fist Squeezing Firmly (Active Force) vs. Softly (Passive Force)

-Experiment 3 (Constant Action vs. Repetitive Action)

Unlike the hypothesis we set up from the result of Experiment 2, results of experimental 3 demonstrate that repetitive actions generate higher EEG R^2 Values. The higher R^2 Values for constant actions in experiment 2 might come from the strong active force generation during constant actions. Experiment 3 shows that repetitive actions generates higher R^2 Values in general.

Emperante (Elit Stani resentation) Data il (Constant rectori (St Repetate rector))											
Movement	Constant Action			R	epetitive Acti	on	Constant vs. Repetitive				
	Channe	Magnitude	Frequency	Channel	Magnitude	Frequency	Channel	Magnitude	Frequency		
	l (#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)		
Connecting Left	3	.41	20-22	3	.43	20-22	12	.11	20-22		
Hand Fingers											
(Tom)											
Connecting Left	2	.24	8-10	2	.35	2-4	1	.11	56-58		
Hand Fingers											
(DHK)											
	_										

Experiment 3 (L)	R StimPresentation) Data A	(Constant Action v	s. Repetitive Action
------------------	-----------------------------------	--------------------	----------------------

Experiment 3 (LR StimPresentation) Data B (Constant Action vs. Repetitive Action)

Moveme	Con	stant Actio	n(Left)	Rep	etitive Acti	on (Left)	Constant Action (Right)			Repetitive Action (Right)		
nt	Cha	Magnitu	Freque	Ch	Magnitu	Freque	Cha	Magnitu	Freque	Cha	Magnitu	Freque
	nnel	de (r^2	ncy	an	de (r^2	ncy	nnel	de (r^2	ncy	nnel	de (r^2	ncy

Tom Wrist Twisting (Constant Action Left, Repetitive Action Left, Constant Action Right, and Repetitive Action Right)

-Experiment 4 (Few Large Muscles vs. Many Small Muscles)

Since our body movements are collective movements of several muscles, it's hard to find movement that is only generated by a single muscle.

Experiment 4	(LR StimPrese	ntation) (Few Larg	ge Muscles Involved	Movement)
---------------------	---------------	--------------------	---------------------	-----------

Movement	Left vs. Pause				Right vs. Paus	e	Left vs. Right			
	Channe	e Magnitude Frequency		Channel	Magnitude	Frequency	Channel	Magnitude	Frequency	
	l (#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	
Legs Lifting Up	5	.27	0-2	10	.27	14-16	11	.16	18-20	
(Tom)										

-Experiment 5 (Imaginary Action vs. Actual Action)

Experiment 5 (Imaginary Action vs. Actual Action) prove that the imaginary action generated EEG signal can be distinguished by itself since its R^2 Values are around 0.15 - 0.25 at low frequencies in all channels. However it's slightly smaller than conventional standard EEG signal in real-time (it requires R^2 Values over 0.3). Also, compare to EEG signals generated by action motor units (actual actions), it's very small that we can't use both imaginary EEG signals and actual action generated EEG signals at same time.

	-			,	ξ U	v	,			
Movement		Actual Actio	n	Ir	naginary Acti	on	Actual vs. Imaginary			
	Channe	Magnitude	Frequency	Channel	Magnitude	Frequency	Channel	Magnitude	Frequency	
	l (#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	
Bicep Curling	3	.21	20-22	6	.26	6-8	0	.35	10-12	
(Tom)										
Bicep Curling	12	.2	4-6	6	.16	6-8	14	.21	Over 60	
(DHK)										
Fist Squeezing	4	.16	6-8	3	.15	22-24	5	.19	8-10	
(DHK)										
Fist Squeezing	14	.24	24-26	9	.15	4-6	12	.11	20-22	
(Tom)										

Experiment 5 (LR StimPresentation) Data A (Imaginary Action vs. Actual Action)

Experiment 5 (LR StimPresentation) Data B (Imaginary Ball 2D Control)

Imaginary		Left			Right			Up			Down	
Direction	Cha	Magnitu	Frequ	Cha	Magnitu	Frequ	Cha	Magnitu	Freque	Cha	Magnitu	Freque
	nnel	de (r^2	ency	nnel	de (r^2	ency	nnel	de (r^2	ncy	nnel	de (r^2	ncy
	(#)	Value)	(Hz)	(#)	Value)	(Hz)	(#)	Value)	(Hz)	(#)	Value)	(Hz)
DHK	8	.19	16-18	5	.23	34-36	5	.15	28-30	6	.2	8-10

Experiment 5 (LR StimPresentation) Data C (Visual Stimulated Imaginary EEG)

Movement	Image of a Balloon Floating in			Image	of a Balloon S	stuck on	Sky vs. Ground			
		Sky		Ground						
	Channe	e Magnitude Frequency		Channel	Magnitude	Frequency	Channel	Magnitude	Frequency	
	1 (#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	
DHK	9	.27	18-20	8	.23	18-20	14	.31	26-28	

-Experiment 6 (Eye Movements// it's more like EMG artifacts)

Even though eye movements are not truly EEG signals (they are EMG signal artifacts), both slow eye movements and saccade generate high EEG R^2 Values. Interestingly, Saccade Movements are almost pure composed with 2-4 Hz (extremely low frequencies) while slow eye movements are composed with over 6 Hz (low frequencies). We have possibilities of using it for 2D control if we can clear up the noisy part in low frequencies.

Imaginary		Left		Right			Up		Down			
Direction	Cha	Magnitu	Frequ	Cha	Magnitu	Frequ	Cha	Magnitu	Freque	Cha	Magnitu	Freque
	nnel	de (r^2	ency	nnel	de (r^2	ency	nnel	de (r^2	ncy	nnel	de (r^2	ncy
	(#)	Value)	(Hz)	(#)	Value)	(Hz)	(#)	Value)	(Hz)	(#)	Value)	(Hz)
Slow Eye	14	.36	26-28	13	.45	14-16	6	.37	38-40	7	.41	26-28
Movement												
(DHK)												
Saccade	14	.7	2-4	11	.83	2-4	14	.45	0-2	9	.51	2-4
Movement												
(DHK)												
Slow Eye	2	.51	6-8	13	.8	8-10	1	.45	6-8	14	.45	26-28
Movement												
(Tom)												

Experiment 6 (LR StimPresentation) (Eye Movements)

Saccade	2	.78	2-4	14	.84	2-4	14	.57	2-4	10	.71	2-4
Movement												
(Tom)												

-Experiment 7 (Trained Muscle Movement vs. Untrained Muscle Movement)

As we expected from the result in Experiment 2, the results of Experiment 7 show that untrained Muscle movement (and also less developed side of brain) generate EEG data of higher R^2 Values. We interpret this result that the untrained movement requires more concentration in both muscle movement and cognitive process in brain, resulting higher R^2 Values.

Movement	Left vs. Pause]	Right vs. Paus	e	Left vs. Right		
	Channe Magnitude Frequency		Channel	Magnitude	Frequency	Channel	Magnitude	Frequency	
	l (#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)	(#)	(r^2 Value)	(Hz)
Hand Writing	1	.31	26-28	12	.19	22-24	12	.09	28-30
(DHK)									
Hand Writing	3	.33	22-24	3	.26	22-24	12	.14	8-10
(Tom)									

Experiment 7 (LR StimPresentation) (Trained vs. Untrained Muscle Movement)

Tom Hand Writing (Left Hand, Right Hand, Comparing Left Hand and Right Hand)

-Experiment 8 (Directional Movements) – reference: http://digital.wustl.edu/e/etd/pdf/Anderson_wustl_0252D_10074.pdf

Professor Moran's ECoG experiment indicates that brain signal has directional properties that ECoG signal's amplitude can be graphed as a form of cosine waves. Even though Professor Moran's idea didn't apply for EEG data, some EEG signals in specific channel and frequencies follow his idea that R² Values have some trend of cosine graph.

	Left	Left-Up	Up	Right-Up	Right
DHK (Channel # 12	.21	.14	.26	.26	.18
Frequency 46-48 Hz)					
DHK (Channel # 11	.05	.15	.25	.30	.23
Frequency 0-2 Hz)					
Tom (Channel # 5	.28	.4	.43	.41	.24
Frequency 10-12)					

Experiment 8	(LR S	stimPresentation)	(Directional	Movements)
---------------------	-------	-------------------	--------------	------------

