Virtual Instrumentation With LabVIEW

Course Goals

- Understand the components of a Virtual Instrument
- Introduce LabVIEW and common LabVIEW functions
- Create a subroutine in LabVIEW
- Work with Arrays, Clusters, and Structures
- Develop in Basic Programming Architectures

Section I

- LabVIEW terms
- Components of a LabVIEW application
- LabVIEW programming tools
- Creating an application in LabVIEW

LabVIEW Programs Are Called Virtual Instruments (VIs)

Front Panel

- Controls = Inputs
- Indicators = Outputs

Block Diagram

- Accompanying "program" for front panel
- Components "wired" together

VI Front Panel

ni.com

VI Block Diagram

ni.com

Express VIs, VIs and Functions

Express VIs: interactive VIs with configurable dialog page

Power

estart averaging

- Standard VIs: modularized VIs customized by wiring
- Functions: fundamental operating elements of LabVIEW; no front panel or block diagram

Standard VI

Controls and Functions Palettes

Controls Palette (Front Panel Window)

Functions Palette (Block Diagram Window)

Tools Palette

- Floating Palette
- Used to operate and modify front panel and block diagram objects.

Automatic Selection Tool

Wiring Tool

***** Shortcut Menu Tool

Breakpoint Tool

Probe Tool

Color Copy Tool

Status Toolbar

Additional Buttons on

the Diagram Toolbar

Run Button

Continuous Run Button

Abort Execution

Pause/Continue Button

Execution Highlighting

Text Settings

Align Objects

Distribute Objects

Reorder

Resize front panel objects

Button

Step Into Button

Step Over Button

Step Out Button

Creating a VI

Front Panel Window

Control Terminals

Block Diagram Window

Creating a VI - Block Diagram

Wiring Tips – Block Diagram

Wiring "Hot Spot"

Click To Select Wires

Use Automatic Wire Routing

Clean Up Wiring

Dataflow Programming

- Block diagram executes dependent on the flow of data; block diagram does NOT execute left to right
- Node executes when data is available to ALL input terminals
- Nodes supply data to all output terminals when done

Help Options

Context Help Online help Lock help Simple/Complex Diagram help Closes the I/O interface and returns the instrument to local mode. Click here for more help. Context Help VISA session HP34401A Close.vi Closes the I/O interface and returns the instrument to local mode. Click here for more help.

- All menus online
- Pop up on functions in diagram to access online info directly

Customize LabVIEW

- Launch LabVIEW and create a Blank VI.
- Set Up Programming Pallette
 - Click on Window -> Show Block Diagram
 - Right Click on the blank white screen to bring up the functions pallette.
 - Click **Search** this takes a minute the first time
 - Click View -> Change Visable Categories

Customize LabVIEW (cont.)

 Check Programming, Measurement I/O, Express, and Select a VI.... Click OK

Customize LabVIEW (cont.)

- Set Options
 - Click on Tools -> Options...
 - Click on Block Diagram
 - Uncheck Enable automatic wire routing
 - Uncheck Place front panel terminals as icons
 - Click on Environment
 - Uncheck Maximum undo steps per VI -> Use default
 - Set Maximum undo steps per VI to 99
 - Click OK

Exercise 1 - Convert °C to °F

Debugging Techniques

Finding Errors

Click on broken Run button Window showing error appears

Execution Highlighting

Click on Execution Highlighting button; data flow is animated using bubbles. Values are displayed on wires.

Probe

Right-click on wire to display probe and it shows data as it flows through wire segment

You can also select Probe tool from Tools palette and click on wire

Section II - SubVIs

- What is a subVI?
- Making an icon and connector for a subVI
- Using a VI as a subVI

SubVIs

- A SubVI is a VI that can be used within another VI
- Similar to a subroutine
- Advantages
 - Modular
 - -Easier to debug
 - Don't have to recreate code
 - -Require less memory

Icon and Connector

 A connector shows available terminals for data transfer

SubVIs

Sub VIs

Steps to Create a SubVI

- Create the Icon
- Create the Connector
- Assign Terminals
- Save the VI
- Insert the VI into a Top Level VI

Create the Icon

 Right-click on the icon in the block diagram or front panel

Create the Connector

Right click on the icon pane (front panel only)

Assign Terminals

Save The VI

- Choose an Easy to Remember Location
- Organize by Functionality
 - -Save Similar VIs into one directory (e.g. Math Utilities)
- Organize by Application
 - Save all VIs Used for a Specific Application into one directory or library file (e.g. Lab 1 – Frequency Response)
 - Library Files (.Ilbs) combine many VI's into a single file, ideal for transferring entire applications across computers

Insert the SubVI into a Top Level VI

Accessing user-made subVIs

Functions >> All Functions >> Select a VI

Or

Drag icon onto target diagram

Exercise 2 – Make C2F.vi a SubVI

Section III – Loops and Charts

- For Loop
- While Loop
- Charts
- Multiplots

Loops

While Loops

- Have Iteration Terminal
- Always Run at least Once
- Run According to Conditional Terminal

For Loops

- Have Iteration Terminal
- Run According to input **N** of Count Terminal

Loops (cont.)

1. Select the loop

2. Enclose code to be repeated

3. Drop or drag additional nodes and then wire

Section IV – Arrays

- Build arrays manually
- Have LabVIEW build arrays automatically

Adding an Array to the Front Panel

From the Controls >> All Controls >> Array and Cluster subpalette, select the Array Shell

Drop it on the screen.

Adding an Array (cont.)

Place data object into shell (i.e. Numeric Control)

Creating an Array with a Loop

Loops accumulate arrays at their boundaries

Creating 2D Arrays

Section V – Array Functions & Graphs

- Basic Array Functions
- Use graphs
- Create multiplots with graphs

Array Functions – Basics

Functions >> All functions>> Array

Array Functions – Build Array

Graphs

 Selected from the Graph palette of Controls menu Controls>>All Controls>>Graphs

Waveform Graph – Plot an array of numbers against their indices Express XY Graph – Plot one array against another Digital Waveform Graph – Plot bits from binary data

Graphs

Right-Click on the Graph and choose Properties to Interactively Customize

Exercise 3 – Instantiate C2F.vi in a Top Level VI

- Create a Top Level VI and insert C2F.vi
- Put C2F.vi in a For Loop and call it 100 times
 - Use the index i as the Celsius input to C2F.vi
 - Wire the output to the edge of the For Loop to create an array and plot the output

Section VI - Case & Sequence Structures, Formula Nodes

Case Structures

- In the Structures subpalette of Functions palette
- Enclose nodes or drag them inside the structure
- Stacked like a deck of cards, only one case visible

Functions >> Execution control

Sequence Structures

- In the Execution Control subpalette of Functions palette
- Executes diagrams sequentially
- Right-click to add new frame

Formula Nodes

- In the Structures subpalette
- Implement complicated equations
- Variables created at border
- Variable names are case sensitive
- Each statement must terminate with a semicolon (;)
- Context Help Window shows available functions

