Data Acquisition Basics

Data Acquistion Parameters

- Block Diagram
- Signal Input Range
- Terminal Configuration (Differential, RSE)
- Acquisition Mode (Continuous Samples)
- Samples to Read
- Sample Rate (Hz)

Graph Function Generator Output

- Create a Blank VI
- Make sure NI ELVIS || is turned on
- Instantiate Functions -> Measurement I/O -> DAQMx -> DAQ Assistant
 - Click on Acquire Signals -> Analog Input -> Voltage and select Dev1 (NI ELVIS II) -> ai0.
 - Signal Input Range = +/- 10 V
 - Terminal Configuration = RSE
 - Acquisition Mode = Continuous Samples

- Acquisition Mode = Continuous Samples
- Samples to Read = 50k
- Sample Rate = 50k Samples per second
- How long does it take to collect 50k samples.

- Configure the Data Acquisition as shown above. Click **OK**
- You will be prompted to insert the DAQ Assistant in a loop click YES

 Connect a BNC cable from the FGEN BNC on NI-ELVIS to Banana
 A and B as shown and add 2 wires from
 Banana A to AIO+ and
 Banana B to AIGND.

- Turn on the Function Generator. See steps 1-4 of this <u>tutorial</u> for details.
- Add a Waveform Graph to your block diagram to see the sine wave. Right click on the graph and click on Visible Items -> Scale Legend and -> Graph Palette

 Change the waveform to triangle and square. Click on the lock to turn off auto scaling and use the zoom tools to look at the waveforms in detail.

Fourier Transform

- All signal can be represented as a sum of sinusoid by using the Fourier Transform.
- If you plot the Magnitude of the Fourier Transform, the X-Axis represents frequency and the Y-Axis represents the amplitude of the frequency components of your signal.
- The term FFT (Fast Fourier Transform) is commonly used to refer to the Discrete Fourier Transform.

Fourier Transform (cont.)

- Verify the frequency of the signal shown above in both the time and frequency domain.
- Notice the harmonic
 distortion not visible in the
 time domain
- You can compute the Signal to Noise ratio easily in the frequency domain. Everything not at 100 Hz is noise.

Fourier Transform (cont.)

 Add a plot of the Frequency Components of the Function Generator output to your vi. Use Functions -> Express -> Signal Analysis -> Spectral to compute the Fourier Transform. The default values will work for us. Wire the graph to the FFT-(RMS) output.