
Design Considerations for Audio Compression

Alexander Benjamin
8/01/10

 The world of music is very different than it was ten years ago, which was markedly changed

from ten years before that. Just as the ways in which people listen to music have evolved steadily over

the last couple of decades, so have the demands and considerations of music listeners. People want

music to have optimal sound quality while requiring as little space as possible (so they can listen to it on

an MP3 player, for example). This paper will discuss the considerations and tradeoffs that go into audio

compression as a determinant of audio quality and the amount of memory that the file occupies.

 Music files are compressed to reduce the amount of data needed to play a song while

minimizing the loss (if any) of perceptible sound quality. A decade ago, hard drive storage was much

more expensive, and so the norm was to compress music. With the advent of digital audio players (MP3

players), compression is desired so that people can fit more songs onto a device. In addition, music

compression is very useful for transferring the data over the internet or between devices. While

download and transfer speeds have increased notably over the years, it takes much longer to download

an uncompressed music file over the internet in comparison to a compressed one.

 Different types of compression algorithms have been developed that aim to reduce or alter the

digital audio data in order to reduce the number of bits needed for playback. The compression process is

called encoding while the reverse is called decoding. From this, compression algorithms are commonly

termed codecs (a combination of coder-decoder).

 There are two types of general data compression: lossless and lossy. As suggested by the name,

lossless compression algorithms do not permanently eliminate any of the original data or transform the

digital data in an irreversible way. Thus, it is possible to reproduce an exact duplicate of the original

digital data by decoding a losslessly compressed file. Conversely, lossy compression algorithms alter or

completely remove digital data, rendering it impossible to reverse the process. As could be expected,

lossy compression algorithms compress more than lossless algorithms. While a lossless algorithm

generally reduces file size to about 50-60% of the original size, a lossy algorithm can typically achieve 5-

20% of the original size and maintain reasonable sound quality.

 All non-trivial compression algorithms use techniques to reduce information redundancy, which

is when more bits than necessary are used to represent a sequence that could be represented with

fewer bits. The most common techniques include coding, linear prediction, and pattern recognition.

Coding is altering the format in which data is represented. For example, a naïve form of coding

used by fax machines, called run-length encoding, would represent “WWWWBBWWWWWW”, the

letters denoting pixel colors white or black on a page, as simply “4W2B6W” i. It is important to note that

certain coding methods are only useful when applied to appropriate data. Using the same example, run-

length encoding would not be useful for a format which varied regularly from each sample to the next

(an image for example). If the sequence were instead “WBRO”, it would encode to “1W1B1R1O”,

doubling the original size.

Linear prediction is a mathematical technique that attempts to estimate future values of a

discrete-time signal as a linear function of previous examplesii. Linear predictive coding (abbreviated

LPC) uses a linear predictive model to represent the spectral envelope of the digital data. It represents

the intensity and frequency of a digital sample with numbers from which the original data can be

reproduced.

Pattern recognition essentially uses a statistical model to analyze a set of data and determine

parts that are repeated. Instead of preserving each instance of the repeated sequence, the pattern can

be symbolically represented each time in order to save space. A unique symbolic description will be

computed for each pattern, and this symbolic description will substitute the patterniii.

It is especially difficult to effectively compress certain music data losslessly because the

waveforms are often much more complex than other audio waveforms such as human speech and don’t

lend as well to pattern detection or predictive models. Also, the variation is often chaotic even between

individual digital samples – this means that consecutive sequences of bits (the

“WWWWBBWWWWWW” example) don’t occur very often. However, the data can be manipulated with

certain signal processing techniques that make the previously described techniques more applicable.

Codecs such as FLAC and Shorten, two well-known lossless compression algorithms, use linear

prediction to estimate the spectrum of the signal. In order to use this technique, these codecs take the

convolution with the filter [-1 1] which helps to whiten (i.e., make the power spectrum flatter) the

signal. By reducing the variability in the spectrum, the linear predictive models are more effective. The

whitening process can easily be reversed when the data is decoded by convolving with the reverse filter.

Other codecs use similar filtering techniques in order to whiten the spectrum for linear predictive

codingiv.

Lossless music compression algorithms retain all of the high-fidelity audio data and can

reproduce the original digital data via decompression. Thus, these algorithms are not judged on the

quality of compression, but mainly on the effectiveness and speed. Certain algorithms optimize slightly

more for the degree of compression (reducing file size), while others optimize slightly more for faster

speeds of compression and decompression (useful especially for real-time applications).

The following is an analysis of how mainstream lossless music codecs perform in relation to each

other and demonstrates performance differences in the above criteria. The music albums used in the

test were selected to possess varying styles of music in order to show the effect of music style on the

effectiveness and speed of the codecs. As a standard of comparison, the wave format is uncompressed

and so can be used to judge the degree of compression.

Album Wave FLAC WavPack Shorten Monkey's Audio OptimFROG
album

average

Life of Destructor 103 101 119 142 130 252 141.2

Exit Planet Dust 107 105 122 150 137 267 148

Demon Days 109 108 125 153 141 273 151.5

The W 123 123 151 176 162 313 174.7

Endtroducing. 126 127 153 179 176 328 181.5

The Best of Nick Cave... 136 146 192 203 204 381 210.3

Superunkown 140 146 187 208 209 381 211.8

Barrio Fino 140 150 198 209 212 392 216.8

Resident Evil: Apocalypse 135 151 196 211 211 398 217

The Essential Classics

Collection 146 200 173 203 278 372 228.7

format average 126.5 135.7 161.6 183.4 186 335.7 188.2

Fig 1. Lossless: Time in seconds needed to rip and encode each album with each codec

126.5

135.7

161.6

183.4

186

335.7

0 50 100 150 200 250 300 350 400

Wave

FLAC

WavPack

Shorten

Monkey's Audio

OptimFROG

Time in seconds

Lossless - Average time to rip and encode album by format

Fig 2. Lossless: Average time to and encode each album by format

 As can be seen, there is significant variation in both the time to rip and encode different albums

based on the complexity of the digital data as well as the performance of each codec. The tradeoff to

speed of the compression process is the degree of compression that each codec achieves. It should be

noted that the tradeoff is not linear, and that some codecs are better at encoding and decoding, as well

as compressing, some styles of music.

Album
Monkey's

Audio

Optim

FROG
FLAC WavPack Shorten

Wave

(uncomp.)

album

average
Compression

Life of Destructor 300E+6 302E+6 317E+6 319E+6 336E+6 488E+6 344E+6 70.45%

Exit Planet Dust 314E+6 315E+6 331E+6 336E+6 372E+6 523E+6 365E+6 69.81%

The Essential Classics

Collection 282E+6 285E+6 303E+6 300E+6 310E+6 742E+6 371E+6 49.93%

Demon Days 321E+6 322E+6 344E+6 344E+6 372E+6 538E+6 373E+6 69.42%

The W 352E+6 354E+6 372E+6 373E+6 435E+6 626E+6 419E+6 66.84%

Endtroducing. 358E+6 359E+6 382E+6 383E+6 420E+6 668E+6 428E+6 64.17%

Superunknown 501E+6 504E+6 522E+6 525E+6 558E+6 780E+6 565E+6 72.44%

The Best of Nick Cave... 492E+6 499E+6 519E+6 526E+6 553E+6 800E+6 565E+6 70.59%

Barrio Fino 544E+6 547E+6 569E+6 571E+6 594E+6 808E+6 605E+6 74.90%

Resident Evil: Apocalypse 554E+6 559E+6 576E+6 583E+6 610E+6 807E+6 615E+6 76.22%

format average 402E+6 405E+6 424E+6 426E+6 456E+6 678E+6 465E+6 68.58%

Fig 3. Lossless: File size in bytes of each album encoded with each codec

402E+6

405E+6

424E+6

426E+6

456E+6

678E+6

000E+0 200E+6 400E+6 600E+6 800E+6

Monkey's Audio

OptimFROG

FLAC

WavPack

Shorten

Wave (uncomp.)

Size in bytes

Lossless - Average size of encoded album by format

Fig. 4 Lossless: Average size of each encoded album for each codec

Album
Monkey's

Audio

Optim

FROG
FLAC WavPack Shorten

Wave

(uncomp.)

Life of Destructor 61.60% 61.87% 65.94% 65.46% 68.85% 100.00%

Exit Planet Dust 60.04% 60.18% 63.30% 64.22% 71.08% 100.00%

The Essential Classics

Collection 38.04% 38.44% 40.82% 40.45% 41.82% 100.00%

Demon Days 59.68% 59.81% 63.90% 64.00% 69.12% 100.00%

The W 56.21% 56.45% 59.39% 59.61% 69.42% 100.00%

Endtroducing. 53.57% 53.85% 57.24% 57.40% 62.95% 100.00%

Superunknown 64.20% 64.63% 66.94% 67.35% 71.52% 100.00%

The Best of Nick

Cave... 61.50% 62.35% 64.89% 65.76% 69.05% 100.00%

Barrio Fino 67.31% 67.63% 70.41% 70.59% 73.48% 100.00%

Resident Evil:

Apocalypse 68.74% 69.35% 71.40% 72.23% 75.58% 100.00%

Average codec

compressed size: 59.09% 59.46% 62.30% 62.71% 67.29% 100.00%

Fig 5. Lossless: Percentage of original file size after compression with each codec

59.09%

59.46%

62.30%

62.71%

67.29%

54.00% 56.00% 58.00% 60.00% 62.00% 64.00% 66.00% 68.00%

Monkey's Audio

OptimFROG

FLAC

WavPack

Shorten

Percentage of Original File Size

Average Compression for Codec

Fig 6. Lossless: Percentage of original file size after compression with each codec

 The first point that becomes immediately obvious is that none of the encoders ‘wins’ in multiple

categories. This reinforces the point that the effectiveness of compression must be traded in order to

achieve speed. The results do suggest that certain codecs have optimized the tradeoff better; in other

words, they are not sacrificing as much time in order to achieve good compression levels.

 From these results, one can see that OptimFROG compresses very well in relation to the other

codecs; however, the time it takes for compression is almost double that of any of the other codecs. This

result suggests what one would have expected given familiarity with the codec – the makers of

OptimFROG attempted to optimize almost entirely for the degree of compressionv.

 The codecs which, based on these results, appear to achieve the best results are Monkey’s

Audio and FLAC. The former achieves notably greater compression, while the latter achieves notably

better compression time. Depending on the specific desire of the user, one of these codecs seems best

for general use.

 To verify that compression was indeed lossless, MD5, SHA1 and CRC-32 hash values were

generated for the uncompressed wave and then a cycle of compression/decompression was done with

each codecvi. The hash values were also generated for the resulting file after the

compression/decompression. The hash values from the original file were identical to the other files, and

the files were the same size.

The other type of compression is termed as ‘lossy’. Lossy compression is actually much more

widely used than lossless, which might seem surprising at first. However, lossy compression can achieve

size reductions to about 5-20% of the original file size and still have good quality such that the music is

indistinguishable from the original file for the average listener. The appeal for mainstream applications

is primarily in the transfer rate of the digital data. Digital television, radio broadcasts, DVDs, and satellite

all use lossy compression to make transfer rates faster and have the data more accessible to end-users.

 Lossy compression focuses on discarding or de-emphasizing pieces of the digital data that are

either imperceptible to the human ear, or else are less critical. Unlike with lossless compression, data

that is compressed lossily is compressed until it reaches a target file size. The target file size is specified

as a bit rate; in other words, how many bits can be used to describe each sample of music. One can think

of this as similar to a color palette for images. If a photograph is redrawn using only 16 colors, details

will be missing and the image will appear drastically different than the original. The more colors that are

used to draw the image, the more details will be noticeable. While there could theoretically be an

infinite number of color shades, at a certain point the human eye will no longer be able to detect further

detail. This analogy translates very well to the idea of lossy music compression and bit rates. A high-

fidelity music file contains far more information, or detail, than the human ear can detect. For this

reason, it is easy to take away a significant amount of digital data without noticeably changing the way a

person perceives it. The average compression threshold, or bit rate, at which a person can notice the

difference in sound is a topic that is regularly under debate and of interest to both music listeners and

music producers.

 It is important to understand how lossy compression codecs determine what digital data is less-

critical in relation to other data. While the same techniques used in lossless compression are still applied

to lossy compression, lossy codecs have the added responsibility of deciding what sounds to remove

rather than just how to compress. Also, the codecs need to calculate how many bits (i.e., how much

detail) to devote to certain sounds.

 The guiding theory in lossy compression comes primarily from the study of psychoacoustics.

Psychoacoustics recognizes that not all sounds are perceptible by the human ear. There is a finite

frequency range at which a person can detect sounds, and also a minimum sound level (called the

absolute threshold of hearing). While humans can, under certain circumstances, hear sounds in the

range of 20 Hz to 20,000 Hz, the upper and lower thresholds are generally lower for most people and

the range decreases with agevii. There is also a limit at which the ear can perceive changes in pitch. The

frequency resolution between 1-2 kHz is 3.6 Hz, meaning that any pitch change smaller than that is

unnoticeableviii. Finally, the concept of auditory masking describes how the perception of one sound can

be affected by the presence of another sound based on their relative volumes and frequenciesix.

Depending on the attributes of simultaneous sounds, some sounds may be completely masked, or less

prominent, to a listener. Lossy compression algorithms take advantage of psychoacoustics to determine

which sounds can be entirely removed, or else described less completely (with less bits).

 Since lossy compression algorithms are generally set for a target bit rate, the pieces of digital

data that become categorized as less-critical will change depending on the degree to which a file is

compressed. Since high-fidelity music contains much more digital data than is critical, these algorithms

can achieve very high levels of compression without perceptibly changing what a human can hear.

Obviously, to reduce the bit rate to a very low level, lossy algorithms are forced to sacrifice noticeable

sound quality.

 Modern codecs can also encode music at a constant bit rate (CBR) or variable bit rate (VBR).

Constant bit rate means that every sample will be described using the same number of bits. If the target

bit rate is 128 Kbits/s, every digital data sample will have that level of detail. Variable bit rate allows the

encoder to use more or less bits per individual sample while maintaining the average rate across the

song. Using VBR, an encoder could use fewer bits to describe a more simple part of a song, and then use

the excess bits to describe the more complex passage. A variable bit rate is almost always desirable as it

allows music to be more accurately represented at lower bit rates.

The following is an analysis of how mainstream lossy music codecs perform in relation to each

other and demonstrates performance differences. It is important to note that this analysis does not

address the quality of the music when compressed which is clearly a vital component when judging a

lossy compression algorithm. It would require polling and blind testing from a wide audience beyond the

current scope of this analysis to determine reliable results. Instead, other studies in this area will be

addressed to discuss perceptible quality differences as a factor of bit rate. This music is encoded at 192

Kbits/s except for AAC (MP4) at 150 Kbits/s, and Musepack at 210 Kbits/s (these levels are generally

accepted to have no obvious quality problems for their respective codecs). All are encoded using VBR

with the exception of WMA which uses CBR. The music albums used in the test were selected to possess

varying styles of music to show the effect of music style on the effectiveness and speed of the codecs.

Album Musepack MP3 Ogg Vorbis AAC WMA album average

Life of Destructor 199 278 305 345 409 307.2

Exit Planet Dust 213 301 325 372 437 329.6

Demon Days 220 301 335 388 438 336.4

The W 251 366 387 429 492 385

Endtroducing. 272 372 406 484 503 407.4

Superunknown 319 433 481 575 595 480.6

The Best of Nick Cave...
326 441 501 573 631 494.4

Resident Evil:

Apocalypse 335 453 511 602 629 506

The Essential Classics

Collection 397 498 540 644 454 506.6

Barrio Fino 334 453 515 558 707 513.4

format average 286.6 390 430.6 497 529.5 426.7

Fig 7. Lossy: The time in seconds to rip and encode each album with each codec

286.6

389.6

430.6

497

529.5

0 100 200 300 400 500 600

Musepack

MP3

Ogg Vorbis

AAC

WMA

Time in seconds

Lossy: Rip-and-encode time with each codec

Fig 8. Lossy: Average rip-and-encode time for each codec

 There are several interesting points to note. First, the timing was fairly widely distributed

between the codecs; no two results were within 30 seconds of each other. Also, the times for lossy

encoding were uniformly much longer than the general times for lossless encoding. This demonstrates

that the calculations and models that use psychoacoustic theory to remove or de-emphasize add

significant run-time.

Album Musepack MP3 Ogg Vorbis AAC WMA album average

Life of Destructor 62,463,762 65,799,179 66,873,414 73,298,256 67,403,568 67,167,636

Exit Planet Dust 62,097,805 73,377,984 71,790,841 69,945,526 66,040,295 68,650,490

Demon Days 67,126,673 73,605,551 73,985,105 71,938,995 75,217,395 72,374,744

The W 72,919,908 81,801,789 86,010,215 80,429,332 72,028,211 78,637,891

Endtroducing. 76,155,602 78,872,240 91,563,952 84,542,617 87,753,080 83,777,498

Superunknown 90,920,669 82,060,838 101,489,253 96,157,939 111,596,278 96,444,995

The Best of Nick Cave...
98,835,214 104,856,944 106,900,824 113,618,837 111,940,344 107,230,433

Resident Evil:

Apocalypse 104,893,796 104,790,872 109,567,328 110,509,197 115,598,661 109,071,971

The Essential Classics

Collection 108,742,066 111,773,130 110,507,870 128,621,332 118,082,946 115,545,469

Barrio Fino 115,936,750 115,799,822 111,235,664 120,693,381 130,805,720 118,894,267

format average 86,009,225 89,273,835 92,992,447 94,975,541 95,646,650 91,779,539

Fig. 9: Lossy: File size in bytes of each album encoded with each codec

86,009,225

89,273,835

92,992,447

94,975,541

95,646,650

80,000,000 82,000,000 84,000,000 86,000,000 88,000,000 90,000,000 92,000,000 94,000,000 96,000,000 98,000,000

Musepack

MP3

Ogg Vorbis

AAC

WMA

Size in bytes

Lossy: Average file size in bytes after compression

Fig. 10. Lossy: Average file size in bytes for each codec after compression

 The results for the file size between different codecs were interesting. There was quite a bit of

variation in the file size of each album between each codec. The results also show that the codec most

successful in compressing varied between albums, suggesting that there is a potentially significant

variation in the effectiveness of each codec for different music styles.

Album Musepack MP3 Ogg Vorbis AAC WMA

Life of Destructor 12.80% 13.49% 13.71% 15.03% 13.82%

Exit Planet Dust 11.87% 14.03% 13.72% 13.37% 12.63%

Demon Days 9.04% 9.91% 9.96% 9.69% 10.13%

The W 13.56% 15.21% 15.99% 14.95% 13.39%

Endtroducing. 12.16% 12.59% 14.62% 13.50% 14.01%

Superunknown 13.62% 12.29% 15.20% 14.41% 16.72%

The Best of Nick

Cave... 12.68% 13.45% 13.71% 14.57% 14.36%

Resident Evil:

Apocalypse 13.11% 13.10% 13.69% 13.81% 14.45%

The Essential

Classics Collection 13.45% 13.83% 13.67% 15.91% 14.61%

Barrio Fino 14.37% 14.35% 13.79% 14.96% 16.21%

format average 12.67% 13.22% 13.81% 14.02% 14.03%

Fig. 11. Lossy: Compression rates for each album by codec

12.67%

13.22%

13.81%

14.02%

14.03%

11.50% 12.00% 12.50% 13.00% 13.50% 14.00% 14.50%

Musepack

MP3

Ogg Vorbis

AAC

WMA

File size as a percentage of uncompressed original file

Lossy: Average compression rates by codec

Fig. 12. Lossy: Average compression rates by codec

 The degree of compression for lossy compression is quite astounding when taking into account

the fact that the quality level at these compression levels is generally accepted to be almost, if not

entirely, indistinguishable from an uncompressed file. This shows that lossy compression algorithms are

probably desirable for applications other than archiving music. These files were compressed to roughly

192 Kbits/s and achieved around 13.5% of the original file size.

 As mentioned previously, this still does not address the question of which codec produces the

highest quality recording when compressed to a given bit rate. When music files are compressed, the

compression can leave artifacts if the data is represented with too few bits to preserve all of the

perceivable sound. Whether or not a listener will be able to hear the difference between music files at

various rates of compression depends on a number of factors, including familiarity with the music,

quality of the sound source, and sensitivity of the listener.

 Conducting a reliable experiment regarding the bit rate threshold at which the music becomes

distinguishably different is outside the scope of this analysis. The pursuit in itself seems somewhat futile

as the answer will always depend on subjective factors such as the quality of the listener’s sound system

and how attuned his or her ear is to music.

 The conclusion of a majority of studies shows that 128 Kbits/s will provide good quality for the

average listener on a typical sound system. A bit rate any lower than that will probably yield obvious

compression artifacts that may bother some listeners more than others. The obvious recommendation

would be to encode one’s music at no less than 128 Kbits/s and to experiment with one’s own set of

circumstances to determine at what bit rate one can no longer notice a difference. It is generally

accepted that non-experts will not be able to tell the difference between music encoded at 192 Kbits/s

and higher bit rates.

 The field of audio compression is one in constant development as the models, optimizations,

and algorithms continue to become more advanced. While different people will likely always have very

individualized preferences for music format and quality, the topic is of interest to users on both ends of

the spectrum. Those who produce music are especially interested, because it can affect the design

decisions for making music. A song that is mixed to sound best at 320 Kbits/s may not sound as good at

lower bit rates. However, recognizing that mainstream listeners use iPods and other portable devices

that rarely use files greater than 128 Kbits/s, some music producers have started designing songs to

sound their best when compressed at these levels. There are so many individual variables that factor

into a specific user’s music preferences that there is likely not any best answer. However, the above

analysis should certainly provide some indication of the considerations and tradeoffs that should be

considered.

i
 Pountain, D. (1978), "Run Length Encoding", BYTE Publications Inc.
ii
 Makhoul, J. (1975), "Linear Prediction: A Tutorial Review," Proceedings of the IEEE, 63.

iii
 Hornegger, Joachim; Paulus, Dietrich W. R. (1999). Applied Pattern Recognition: A Practical Introduction to Image

and Speech Processing in C++ (4th ed.)
iv

 Rocchesso, D., Introduction to Sound Processing. Edizioni di Mondo Estremo, Firenze, 2003
v
 OptimFROG creators: http://www.losslessaudio.org/

vi
 Using “HashTab Shell Extension”: http://beeblebrox.org/

vii
 Plack, Christopher, J. (2005). The Sense of Hearing . Routledge. ISBN 0805848843.

viii
 Olson, Harry F. (1967). Music, Physics and Engineering. Dover Publications. pp. 248–251. ISBN 0486217698.

ix
 Gelfand, S.A. (2004) Hearing: An Introduction to Psychological and Physiological Acoustics 4th Ed. New York,

Marcel Dekker

