CUBESAT COMMUNICATION

Developing a Better Picosatellite Communication System

Michael Scholl, Alex Gu, and Andrew Weins

Table of Contents

- Goal
- Issues
- Previous Solutions
- Our Satellite
- Our Approach
- Next Steps

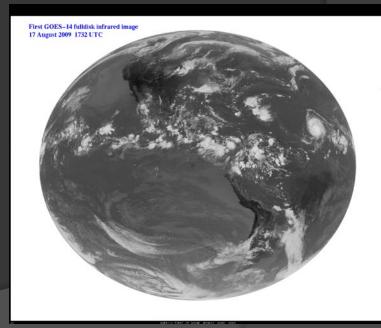
Goal

 Develop an algorithm that increases the quality or quantity of infrared images sent from a CubeSat module to a base station.

Issues

- Size 10cm X 10cm X 10cm
- Distance 200 to 300 km above ground
- Speed
- Rotation
- Memory 2k RAM, 60k flash
- Power 1W average power

Previous Solutions


- GeneSat1
 - Microhard MHX-2400 transceiver
 - Max of 83 kbps
 - 410km high
 - 90 minute orbit
 - 3 minute average pass time
 - Best case
 - 15 Mb per pass
 - 240 Mb per day

Our Satellite

- Gathers infrared images of Earth
 - FLIR tau 320 camera
 - 1.16 Mb per image
 - 25 to 30 Hz
 - 200 to 300 km high
 - Similar speed, but ½ fov
 - Best case is about 6.5 images per pass

Our Approach

- Focus on transmitting only good images
 - GPS Correct location
 - Image processing Space vs Earth, land vs sea
- Compress images
 - Reduce from 256 grayscale
 - Reduce resolution

Next steps

- Create an IR model of the Earth
- Simulate image data from rotating camera
- Test algorithm
- Launch satellite
- Arrays
 - Sensing space debris or plumes
 - Two cameras using displacement
 - One camera using time delay