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HDL Coding Guidelines

Coding style has a considerable impact on how an FPGA design is 
implemented and ultimately how it performs. Although many popular 
synthesis tools have significantly improved optimization algorithms for 
FPGAs, it is still the designer’s responsibility to generate HDL code that 
guides the synthesis tools and achieves the best result for a given 
architecture. This chapter provides VHDL and Verilog HDL design guidelines 
for both novice and experienced designers.

The synthesis software itself has a significant effect on implementation. The 
style of the code that you employ in one synthesis tool for one outcome can 
vary greatly from that in another tool. Synthesis tools optimize HDL code for 
logic utilization and performance, but they do so in a way that might not be 
close to your intended design. Knowing the effects of these synthesis tools, as 
well as knowing the most efficient HDL code for your design requirements, are 
both important. 

General HDL Practices

Coding for Hierarchical Synthesis
In order to manage the complexity of modern designs, coding a design using 
hierarchical approach rather than just one single module is necessary. Such a 
hierarchical coded design can be synthesized all at one time, or have each 
module synthesized separately and then combined together. When 
synthesized all at one time, such a design can either be synthesized as a flat 
module or as manly hierarchical modules. Each methodology has its 
advantages and disadvantages. Since designs in smaller blocks are easier to 
keep track of, applying a hierarchical structure to large and complex FPGA 
designs is preferable. Hierarchical coding methodology also allows a group of 
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engineers to work on one design at the same time. It speeds up design 
compilation, makes changing the implementation of key blocks easier, and 
reduces the design period by allowing the re-use of design modules for 
current and future designs. In addition, it produces designs that are easier to 
understand.

However, if the design mapping into the FPGA is not optimal across 
hierarchical boundaries, it can lead to higher device utilization and lower 
design performance. You can overcome this disadvantage with careful design 
consideration when choosing the design hierarchy. This section describes 
coding techniques that will create good results when doing hierarchical 
synthesis, and as a result, synthesis is not able to optimize across the module 
boundaries. They will not affect the results if the design is synthesized all as a 
flat module as synthesis is able to optimize across the boundaries of the 
modules.

Although hierarchical synthesis takes more HDL coding planning and effort, 
because modules can be synthesized separately, the modules can be 
synthesized with different goals / tool settings.  The HDL coding techniques 
help avoid the drawback of hierarchical synthesis (vs. flat synthesis) - reduced 
quality of results as synthesis cannot optimize across module boundaries

Here are some tips for building optimal hierarchical structures: 

 The top level should only contain instantiation statements to call all major 
blocks.

 Any I/O instantiations should be at the top level.

 Any signals going into or out of the devices should be declared as input, 
output, or bidirectional pins at the top level.

 The tri-state statement for all bidirectional ports should be written at the 
top-level module. For example, the following Verilog HDL statement 
should only be in the top level and not in sub-modules: 

“ouput_signal = en ? data : 16’bz” 

Design Partitioning
By effectively partitioning the design, you can reduce overall run time and 
improve synthesis results. Here are some recommendations for design 
partitioning. In the following descriptions, sub-blocks and blocks refer to either 
VHDL design units or Verilog HDL modules.

Maintain Synchronous Sub-Blocks by Registering All 
Outputs
Arrange the design boundary so that the outputs in each block are registered. 
Registering outputs helps the synthesis tool implement the combinatorial logic 
and registers in the same logic block. Registering outputs also makes the 
application of timing constraints easier since it eliminates possible problems 
with logic optimization across design boundaries. Using a single clock for 
each synchronous block significantly reduces the timing consideration in the 
block. It leaves the adjustment of the clock relationships of the whole design 
at the top level of the hierarchy. Figure 1 shows an example of synchronous 
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blocks with registered outputs.

Keep Related Logic Together in the Same Block
Keeping related logic and sharable resources in the same block allows the 
sharing of common combinatorial terms and arithmetic functions within the 
block. It also allows the synthesis tools to optimize the entire critical path in a 
single operation. Since synthesis tools can only effectively handle 
optimization of certain amounts of logic, optimization of critical paths pending 
across the boundaries might not be optimal. The example in Figure 2 merges 
sharable resource in the same block.

Separate Logic with Different Optimization Goals
Separating critical paths from non-critical paths might achieve efficient 
synthesis results. At the beginning of the project, you should consider the 
design in terms of performance requirements and resource requirements. If a 
block contains two portions, one that needs to be optimized for area and a 
second that needs to be optimized for speed, they should be separated into 
two blocks. By doing this, you can apply different optimization strategies for 
each module without the two modules being limited by one another.

Keep Logic with the Same Relaxation Constraints in the 
Same Block
When a portion of the design does not require high performance, you can 
apply this portion with relaxed timing constraints to achieve high utilization of 
a device area. Relaxation constraints help to reduce overall run time. They 

Figure 1: Synchronous Blocks with Registered Outputs

Figure 2: Merging Sharable Resource in the Same Block
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can also help to efficiently save resources, which can be used on critical 
paths. Figure 3 shows an example of grouping logic with the same relaxation 
constraint in one block.

Keep Instantiated Code in Separate Blocks
Leave the RAM block in the hierarchy in a separate block, as shown in 
Figure 4. This coding style facilitates the integration of the Diamond 
IPexpress tool into the synthesis process.

Balancing Block Size
Although a smaller block methodology allows more control, it might not 
produce the most efficient design. The smaller the block, the fewer resources 
the synthesis tool has to apply “resource sharing” algorithms. On the other 
hand, the larger the block, the more the synthesis tool has to process, and 
this could cause changes that affect more logic than necessary in an 
incremental or multi-block design flow. The general recommendation is to limit 
the block size to functions that either make sense logically or in a manner that 
lends itself to re-usability, the exception being where the fit and/or timing are 
really tight and more control over placement of specific elements is required.

Design Registering
Pipelining can improve design performance by restructuring a long data path 
with several levels of logic and breaking it up over multiple clock cycles. This 
method allows a faster clock cycle by relaxing the clock-to-output and setup 
time requirements between the registers. It is usually an advantageous 
structure for creating faster data paths in register-rich FPGA devices. 
Knowledge of the FPGA architecture helps in planning pipelines at the 
beginning of the design cycle. When the pipelining technique is applied, 
special care must be taken for the rest of the design to account for the 
additional data path latency. The following illustrates the same data path 

Figure 3: Logic with the Same Relaxation Constraint

Figure 4: Separate RAM Block
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before (Figure 5) and after pipelining (Figure 6).

Before pipelining, the clock speed is determined by three components:

 the clock-to-out time of the source register

 the logic delay through three levels of combinatorial logic and the 
associated routing delays

 the setup time of the destination register

After pipelining, the clock speed is significantly improved by reducing the 
delay of three logic levels to one logic level and the associated routing delays, 
even though the rest of the timing requirements remain the same. However, 
the overall latency from start to finish through this path is increased. This is a 
design trade-off you must consider when looking to employ pipelining in your 
design.

Adding pipeline stages can be done manually in code. Although synthesis 
tools are capable of moving logic around the pipeline stages for re-timing, in 
general, doing it manually in code makes it easier to simulate because the 
behavioral code directly matches the simulation results.

It is always important to check the placement and routing timing report to 
ensure that the pipelined design provides the desired performance. For lower 
power do not use more pipelining than is necessary to achieve this.

Figure 5: Before Pipelining 

Figure 6: After Pipelining
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Figure 7: No Pipelining Results in Three Levels of Logic

VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity non_pipelined is

port (clk : in std_logic;      

data_in : in std_logic_vector(8 downto 0);

data_out : out std_logic

     );

end non_pipelined;

architecture behavioral of non_pipelined is

signal data : std_logic_vector(8 downto 0);

signal result : std_logic;

begin

-- process for registering data_in

process(clk)

begin

    if(rising_edge(clk)) then

        data <= data_in;

    end if;

end process;

--process for AND gate equation.

process(clk)

begin

    if(rising_edge(clk)) then

    -- AND gate is done in a single stage.

data_out <= data(0) and data(1) and data(2) and 

data(3) and data(4)and data(5) and data(6) and 

data(7) and data(8);

    end if;

end process;

end behavioral;
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Verilog HDL

module non_pipelined(
    input  clk,

 input  [8:0] data_in,
 output reg data_out 

  );

reg [8:0] data;

always @ (posedge clk)
  begin
    data     <= data_in;  // process for registering data_in
    data_out <= (& data); // AND gate is done in a single 
stage.
  end

endmodule

Figure 7: No Pipelining Results in Three Levels of Logic (Continued)
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Figure 8: With Pipelining Results in One Level of Logic 

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity pipelined is
port (clk : in std_logic;

data_in : in std_logic_vector(8 downto 0);
data_out : out std_logic

     );
end pipelined;

architecture behavioral of pipelined is

signal data: std_logic_vector(8 downto 0);
signal temp1,temp2 : std_logic;

begin

  -- process for registering data_in
process(clk)
begin
    if(rising_edge(clk)) then
        data <= data_in;
    end if;
end process;

--process for AND gate equation.
process(clk)
begin
    if(rising_edge(clk)) then
       temp1    <= (data(0) and data(1) and data(2) and 
data(3));
       temp2    <= (data(4) and data(5) and data(6) and 
data(7));
       data_out <= (temp1 and temp2 and data(8));
    end if;
end process;

end behavioral;
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Verilog HDL
module pipelined (
    input clk,

 input [8:0]data_in,
 output reg data_out

  );

reg [8:0] data;
reg temp1,temp2;

always @ (posedge clk)
  begin
    data     <= data_in;                      // input register
    temp1    <= (& data[3:0]);                // store 
temporary result
    temp2    <= (& data[7:4]);                // store 
temporary result
    data_out <= (temp1 && temp2 && data[8]);  // output 
register
  end
  
endmodule

Figure 8: With Pipelining Results in One Level of Logic  (Continued)
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Comparing If-Then-Else and Case 
Statements
Case and if-then-else statements are common for sequential logic in HDL 
designs. The if-then-else statement generally generates priority-encoded 
logic, whereas the case statement implements balanced logic. An if-then-else 
statement can contain a set of different expressions, but a case statement is 
evaluated against a common controlling expression. Both statements give the 
same functional implementation if the decode conditions are mutually 
exclusive, as shown in Figure 9 and Figure 10.

Figure 9: Case Statements with Mutually Exclusive Conditions

VHDL
process (s, x, y, z) 
begin
  Out1 <= '0';
  Out2 <= '0';
  Out3 <= '0';

  case (s) is
    when "00" => Out1 <= x;
    when "01" => Out2 <= y;
    when "10" => Out3 <= z;
    when others => Out1 <= '0'; Out2 <= '0';
      Out3 <= '0';
  end case;
end process;
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Verilog HDL
module case_example (
  input [1:0] s, 
  input x, y, z,
  output reg Out1, Out2, Out3
);

always @ (s or x or y or z) 
  begin
    Out1 <= 1'b0;
    Out2 <= 1'b0;
    Out3 <= 1'b0;

    case (s) 
      2'b00 : Out1 <= x;
      2'b01 : Out2 <= y;
      2'b10 : Out3 <= z;
      default: 
        begin
          Out1 <= 1'b0; 
          Out2 <= 1'b0;
          Out3 <= 1'b0;
        end
    endcase
  end

endmodule

Figure 10: If-Then-Else Statements with Mutually Exclusive Conditions

VHDL
process (s, x, y, z)
begin
  Out1 <= '0';
  Out2 <= '0';
  Out3 <= '0';

  if s = "00" then Out1 <= x;
  elsif s = "01" then Out2 <= y;
  elsif s = "10" then Out3 <= z;
  else Out1 <= '0'; Out2 <= '0'; Out3 <= '0';
  end if;
end process;

Figure 9: Case Statements with Mutually Exclusive Conditions 
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However, the use of the if-then-else construct could make the design more 
complex than necessary, because extra logic is needed to build a priority tree.

Consider the examples in Figure 11 and Figure 12.

Verilog HDL
module case_example (
  input [1:0] s, 
  input x, y, z,

  output reg Out1, Out2, Out3
);

always @ (s or x or y or z) 
  begin
    Out1 <= 1'b0;
    Out2 <= 1'b0;
    Out3 <= 1'b0;

    if (s == 2'b00)
      Out1 <= x;
    else if (s == 2'b01)
      Out2 <= y;         
    else if (s == 2'b10)
      Out3 <= z;         
    else
        begin
          Out1 <= 1'b0; 
          Out2 <= 1'b0; 
          Out3 <= 1'b0;
        end
  end
endmodule

Figure 11: Example A – If-Then-Else Statement with Lower Logic 

Requirement

VHDL
process (s1, s2, s3, x, y, z)

begin

  Out1 <= '0';

  Out2 <= '0'; 

  Out3 <= '0'; 

  if s1 = '1' then Out1 <= x; 

  elsif s2 = '1' then Out2 <= y;

  elsif s3 = '1' then Out3 <= z; 

  end if; 

end process; 

Figure 10: If-Then-Else Statements with Mutually Exclusive Conditions 



General HDL Practices

HDL Coding Guidelines 13

Verilog
module case_example (
  input s1, s2, s3, x, y, z,
  output reg Out1, Out2, Out3
);

always @ (s1 or s2 or s3 or x or y or z) 
  begin
    Out1 <= 1'b0;
    Out2 <= 1'b0;
    Out3 <= 1'b0;

    if (s1)
      Out1 <= x;
    else if (s2)
      Out2 <= y;         
    else if (s3)
      Out3 <= z;         
  end
endmodule

Figure 12: Example B – Simplified O3 Equations

VHDL
process (s1, s2, s3, x, y, z)

begin

  Out1 <= '0'; 

  Out2 <= '0'; 

  Out3 <= '0'; 

  if s1 = '1' then Out1 <= x; 

  end if;

  if s2 = '1' then Out2 <= y;

  end if; 

  if s3 = '1' then Out3 <= z;

  end if; 

end process;

Figure 11: Example A – If-Then-Else Statement with Lower Logic 

Requirement (Continued)



General HDL Practices

14 HDL Coding Guidelines

If the decode conditions are not mutually exclusive, the if-then-else construct 
causes the last output to be dependent on all the control signals. The 
equation for O3 output in example A is:

O3 <= z and (s3) and (not (s1 and s2));

When the same code can be written as in example B, most of synthesis tools 
remove the priority tree and decode the output as:

O3 <= z and s3;

This reduces the logic requirement for the state machine decoder. If each 
output is indeed dependent of all of the inputs, it is better to use a case 
statement, since case statements provide equal branches for each output.

Verilog
module case_example (
  input s1, s2, s3, x, y, z,
  output reg Out1, Out2, Out3
);

always @ (s1 or s2 or s3 or x or y or z) 
  begin
    Out1 <= 1'b0;
    Out2 <= 1'b0;
    Out3 <= 1'b0;

  if (s1) 
    Out1 <= x;         
  if (s2) 
    Out2 <= y;         
  if (s3) 
    Out3 <= z;         

  end
endmodule

Figure 12: Example B – Simplified O3 Equations (Continued)
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Avoiding Unintentional Latches
While latches can be suitable (or even preferred) in an ASIC where you 
control the gates, in an FPGA they have to be mapped to the technology 
available, because FPGA fabric usually does not include latches for 
simplifying the design flow. 

FPGA users should avoid using latches. If a design does have latches and the 
target FPGA does not have latches, the synthesis tools have to build them out 
of muxes with feedback loops—which will cause design area increase, 
performance degradation, and problems with static timing analysis by 
introducing combinatorial feedback loops that create asynchronous timing 
problems. 

Synthesis tools infer latches from incomplete conditional expressions, such as 
an if-then-else statement without an else clause. To avoid unintentional 
latches, specify all conditions explicitly or specify a default assignment. 
Unintentional latches can be avoided by using clocked registers or by 
employing any of the following coding techniques: 

 Complete Assignment for all input conditions using conditional statements 
(Figure 13)

 Complete Assignment for all input conditions using case statements 
(Figure 14)

 Complete Assignment for all input conditions using if and else statements 
(Figure 15)
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Figure 13: Complete Assignment for All Input Conditions Using 

Conditional Statements

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity complete_assignment_conditional is
port (    
    sel, sel_2, sel_3, a, b : in  std_logic;
    f, g                    : out std_logic
  );
end complete_assignment_conditional;

architecture Behavioral of complete_assignment_conditional is

signal sel_wire : std_logic_vector(2 downto 0);

begin

-- concatenate inputs for convenience
sel_wire <= (sel_3 & sel_2 & sel);

f <= a when (sel_wire(0) = '0') else b;

g <=   (a and b)       when (sel_wire = "000") else
       (not (a and b)) when (sel_wire = "001") else
       (a and b)       when (sel_wire = "010") else
       (a and b)       when (sel_wire = "011") else
       (not b)         when (sel_wire = "100") else
       (a xor b)       when (sel_wire = "101") else
       (not a)         when (sel_wire = "110") else
       (not a)         when (sel_wire = "111");

end Behavioral;
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Verilog HDL
module complete_assignment_conditional (
    input sel, sel_2, sel_3,
    input a,b,
    output f,g
  );

wire [2:0] sel_wire; 

assign sel_wire = {sel_3, sel_2, sel};  // concatenate inputs 
for convenience

assign f = (sel_wire[0] ? a : b);

assign g = (sel_wire == 3'b000 ? (a & b)  :
           (sel_wire == 3'b001 ? !(a & b) :
           (sel_wire == 3'b010 ? (a & b)  :
           (sel_wire == 3'b011 ? (a & b)  :
           (sel_wire == 3'b100 ? !b       :
           (sel_wire == 3'b101 ? (a ^ b)  :
           (sel_wire == 3'b110 ? (!a      :
           (sel_wire == 3'b111 ? (!a      : !a))))))));               
endmodule

Figure 13: Complete Assignment for All Input Conditions Using 

Conditional Statements (Continued)
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Figure 14: Assigning Outputs for All Input Conditions Using Case 

Statements

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity complete_assignment_case is
port (    
    sel, sel_2, sel_3, a, b : in  std_logic;
    f, g                    : out std_logic
  );
end complete_assignment_case;

architecture behavioral of complete_assignment_case is

signal sel_wire : std_logic_vector(2 downto 0);

begin

sel_wire <= (sel_3 & sel_2 & sel);

process (sel_wire, a, b) 
  begin
    case (sel_wire) is
      
      when "000" =>
          g <= (a and b);
          f <=  b;
      
      when "001" =>
          g <= not(a and b);
          f <= a;

      when "010" =>
          g <= (a and b);
          f <=  b;

      when "011" =>
          g <= (a and b);
          f <= a;

      when "100" =>
          g <= not b;
          f <=  b;

      when "101" =>
          g <= (a xor b);
          f <=  a;

      when "110" =>
          g <= not a;
          f <=  b;

      when "111" =>
          g <= not a;
          f <=  a;
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-- vhdl requires others case even though all cases are 
accounted for      
      when others =>
          g <= not a;
          f <=  a;
      
    end case;
end process;

end behavioral;

Verilog HDL
module complete_assignment_assign (

    input sel, sel_2, sel_3,

    input a,b,

    output reg f,g

  );

wire [2:0] sel_wire; 

assign sel_wire = {sel_3, sel_2, sel};  // concatenate 

inputs for convenience

always @ (sel_wire or a or b)

  begin

    case (sel_wire)

      3'b000:

        begin

          g <= (a & b);

          f <=  b;

        end

        

3'b001:

        begin

          g <= !(a & b);

          f <= a;

        end

      3'b010:

        begin

          g <= (a & b);

          f <=  b;

        end

Figure 14: Assigning Outputs for All Input Conditions Using Case 

Statements (Continued)
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 3'b011:

        begin

          g <= (a & b);

          f <= a;

        end

      3'b100:

        begin

          g <= !b;

          f <=  b;

        end

      3'b101:

        begin

          g <= (a ^ b);

          f <=  a;

        end

      3'b110:

        begin

          g <= !a;

          f <=  b;

        end

      3'b111:

        begin

          g <= !a;

          f <=  a;

        end

    endcase

  end

// no default case needed because all cases are accounted 

for

  
endmodule

Figure 14: Assigning Outputs for All Input Conditions Using Case 

Statements (Continued)
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Figure 15: Complete Assignment for All Input Conditions Using If and 

Else Statements

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity complete_assignment_if_else is
port (    
    sel, sel_2, sel_3, a, b : in  std_logic;
    f, g                    : out std_logic
  );
end complete_assignment_if_else;

architecture behavioral of complete_assignment_if_else is

begin
process (sel, sel_2, sel_3, a, b)
  begin
    if (sel = '1') then
      f <= a;
      if (sel_2 = '1') then
        g <= not a;
      else
        if (sel_3 = '1') then
          g <= (a xor b);
        else
          g <= not b;
        end if;
      end if;
    else
      f <= b;
      if (sel_2 = '1') then
        g <= (a and b);
      else
        if (sel_3 = '1') then
          g <= not (a and b);
        else
          g <= (a and b);
        end if;
      end if;
    end if;  
end process;

end behavioral;
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Verilog HDL
module complete_assignment_if_else (

    input sel, sel_2, sel_3,

    input a,b,

    output reg f,g

  );

always @ (sel or sel_2 or sel_3 or a or b)

  begin

    if (sel == 1)

      begin

        f = a;

        if (sel_2 == 1)

          g = ~ a;

        else

          begin

            if (sel_3 == 1)

              g = a ^ b;

            else

              g = ~ b;

          end

      end

    else

      begin

        f = b;

        if (sel_2 == 1)

          g = (a & b);

        else

          if (sel_3 == 1)

            g = ~(a & b);

        else

            g = a & b;

      end

    end 
endmodule

Figure 15: Complete Assignment for All Input Conditions Using If and 

Else Statements (Continued)
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Another way to avoid unintentional latches is to check the synthesis tool 
outputs. Most of the synthesis tools give warnings whenever there are latches 
in the design. Checking the warning list after synthesis saves a tremendous 
amount of effort in trying to determine why a design is so large later in the 
place-and-route stage.

Register Control Signals
The general-purpose latches and flip-flops in the PFU are used in a variety of 
configurations, depending on the device family.

For example, in the LatticeEC family of devices, you can apply clock, clock-
enable, and LSR control to the registers on a slice basis. Each slice contains 
two LUT4 lookup tables feeding two registers (programmed to be in flip-flop or 
latch mode) and some associated logic that allows the LUTs to be combined 
to perform functions, such as LUT5, LUT6, LUT7, and LUT8. Control logic 
performs set/reset functions (programmable as synchronous/asynchronous), 
clock-select, chip-select, and wider RAM/ROM functions.

When writing design codes in HDL, keep the architecture in mind to avoid 
wasting resources in the device. Here are several points for consideration:

 If the register number is not a multiple of 2 or 4 (dependent on device 
family), try to code the registers in such a way that all registers share the 
same clock, and in a way that all registers share the same control signals.

 Lattice Semiconductor FPGA devices have multiple dedicated clock 
enable signals per PFU. Try to code the asynchronous clocks as clock 
enables, so that PFU clock signals can be released to use global low-
skew clocks.

 Try to code the registers with local synchronous set/reset and global 
asynchronous set/reset.

For more detailed architecture information, refer to the Lattice Semiconductor 
FPGA data sheets.

Global Reset (GSR) and Local Resets 
(LSR)
Lattice FPGAs contains a GSR (Global Set Reset) resource.  The GSR 
hardware resource in Lattice FPGAs provides a convenient mechanism to 
allow design components to be reset without using any general routing 
resources. How the design is coded can impact how much the GSR resource 
can be exploited. During power up, the device is configured with its bitstream, 
a reset is issued across the entire device to put it into a known state, and then 
the device begins to operate. This reset event is called Power Up Reset, and 
it is distributed across the device using the GSR resource.

Note: A PUR component is provided to allow simulation test benches to 
simulate this pulse, but this component is never used as part of the design.
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There are two primary ways to take advantage of the GSR hardware resource 
in your design: use the GSR to reset all components on your FPGA or to use 
the GSR to eliminate any routing resources needed for one reset in a multiple 
reset design. If there is only one reset signal for the entire design, you would 
want to use the GSR in the first way, to reset all components on the FPGA. 
When using the GSR to eliminate any routing resources needed for one reset 
in a multiple reset design, typically the GSR would be used for the reset with 
the highest fan-out.

The GSR can only be used for asynchronous active low resets due to the 
underlying hardware. The software will take this into account automatically 
and will not implement a synchronous reset using GSR when the Inferred 
GSR or User Specified Inferred GSR modes are used.

GSR Usage Cases
There are three cases with respect to initialization set/resets: Inferred GSR, 
Global GSR, and LSR (No GSR). The three GSR usage cases are defined as 
follows:

 Inferred GSR – In this usage case, the software automatically determines 
which reset signal has the highest fan-out (for either single or multiple 
reset designs) and uses the GSR resource as the routing for that reset 
signal. This usage case is the default condition if there is no user-
instantiated GSR component in the design. This usage case is the best 
choice for most applications. The software determines the reset with the 
most loads and uses the GSR resource for that signal, which provides the 
largest reduction in needed routing resources. The Inferred GSR usage 
case can be used whether the design has a single or multiple resets. The 
user can also optionally specify, through a preference, which reset signal 
is to be implemented using the GSR resource.

 Global GSR – This usage case delivers a reset pulse (over GSR) to all 
elements in the design, even if an element is not connected in the HDL to 
the signal driving this reset pulse.

 LSR (No GSR) – LSR (local set/reset) specifies that no GSR is to be 
used, which means that all resets will use local routing resources instead 
of using the GSR resource.

In the Inferred GSR case, the software will only connect elements with an 
asynchronous reset to GSR. Elements requiring synchronous reset will use 
only local routing.

Inferred GSR
The Inferred GSR usage case is the simplest to use. If everything is left to 
default software settings and no GSR component is instantiated in the design, 
then the software will implement the reset signal with the highest fan-out of 
active low asynchronous elements on the GSR resource. Inferred GSR is the 
recommended usage case unless any of the following conditions exist:

 If you need to implement a specific reset signal on GSR.
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 If you need to implement a global reset and want to avoid coding it 
throughout the HDL.

 If you need to completely disable GSR.

To use the Inferred GSR usage case, there are no design changes necessary. 
You simply implement the design with default settings. To specify which net to 
use, instead of having the software automatically determine this, you can use 
the GSR_NET preference.

Global GSR
The Global GSR usage case is intended for all elements in a design to be 
reset using the GSR resource. This usage is a good fit for a design with a 
single reset. It can also be used with multiple resets in the design, but this can 
produce unexpected functionality and is not recommended. See the topic 
“How to Use the Global Set/Reset (GSR) Signal” in the Lattice Diamond 
online Help.

To use the Global GSR usage case, a GSR component must be instantiated 
in the design and connected to the signal that is targeted as the reset signal, 
usually a primary input. If a GSR component is not instantiated in the design, 
the software will not treat the design as a Global GSR usage case. The GSR 
component must be instantiated into the design itself, not into the test bench 
for the design

LSR (No GSR)
The LSR (local set/reset) usage case always uses local routing for the reset 
signals and does not use the GSR resource. This is the recommended usage 
case if there is a requirement to do timing analysis on the reset signals or if 
synchronous reset is being used throughout the design. To use the LSR 
usage case, there must be no GSR instantiated in the design, no GSR_NET 
preference specified, and the software settings used must not infer any GSR 
resource. 
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Clock Enable
Figure 16 shows an example of gated clocking. Gating clocks is not 
encouraged in digital designs because it can cause timing issues, such as 
unexpected clock skews. The structure of the PFU makes the gating clock 
even more undesirable, because it uses up all the clock resources in one PFU 
and sometimes wastes the flip-flop and latch resources in the PFU..

Figure 17 shows a better alternative. By using the clock enable in the PFU, 
you can achieve the same functionality without worrying about timing issues, 
since only one signal is controlling the clock. Since only one clock is used in 
the PFU, all related logic can be implemented in one block to achieve better 
performance. Lastly, lower power can be achieved by using the clock enable 
to keep registers from switching when not needed.

Samples of the VHDL and Verilog HDL code for clock enable are shown in 
Figure 18.

The following are guidelines for coding the clock enable in Lattice 
Semiconductor FPGAs:

Figure 16: Asynchronous: Gated Clocking (Not Recommended)

Figure 17: Synchronous: Clock Enabling (Recommended)

Figure 18: Clock Enable Coding

VHDL Verilog HDL

Clock_Enable: process (clk, clken, din)
begin

if (clk'event and clk = '1') then
if (clken = '1') then
qout <= din;

end if;
end if;

end process Clock_Enable;

always @(posedge clk)
qout <= clken ? din : qout;
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 Clock enable is only supported by flip-flops, not latches.

 Flip-flop pairs inside a slice block share the same clock enable.

 All flip-flops have a positive clock enable input.

 The clock-enable input has higher priority than the synchronous set/reset 
by default. 

Regarding the priority, you can program the synchronous LSR to have a 
higher priority than the clock enable by instantiating the library element in the 
source code. For example, the library element FD1P3IX is a flip-flop that 
allows the synchronous clear to override the clock enable. You can also 
specify the priority of generic coding by setting the priority of the control 
signals differently.

The examples in Figure 19 and Figure 20 demonstrate coding methodologies 
to help the synthesis tools set the priorities of the clock enable and the 
synchronous LSR.

Figure 19: Clock Enable over Synchronous LSR

VHDL Verilog HDL

COUNT8: process (CLK, GRST)
begin

if (GRST = '1') then
cnt <= (others => '0');

elsif (CLK'event and CLK = '1') then
if (CKEN = '1') then

cnt <= cnt + 1;
elsif (LRST = '1') then

cnt <= (others => '0');
endif;

endif;
end process COUNT8;

always @(posedge CLK or posedge GRST)
begin
if (GRST)
cnt = 4'b0;

else if (CKEN)
cnt = cnt + 1'b1;

else if (LRST)
cnt = 4'b0;

end

Figure 20: Synchronous LSR over Clock Enable

VHDL Verilog HDL

COUNT8: process (CLK, GRST)
begin

if (GRST = '1') then
cnt <= (others => '0');

elsif (CLK'event and CLK = '1') then
if (LRST = '1') then

cnt <= (others => '0');
elsif (CKEN = '1') then

cnt <= cnt + 1;
endif;

endif;
end process COUNT8;

always @(posedge CLK or posedge GRST)
begin
if (GRST)
cnt = 4'b0;

else if (LRST)
cnt = 4'b0;

else if (CKEN)
cnt = cnt + 1'b1;

end



General HDL Practices

28 HDL Coding Guidelines

Multiplexers
The flexible configurations of LUTs within slice blocks can realize any 4-, 5-, 
6-, 7-, or 8-input logic function like 2-to-1, 3-to-1, 4-to-1, or 5-to-1 multiplexers.

You can efficiently create larger multiplexers by programming multiple 4-input 
LUTs. Synthesis tools can automatically infer Lattice Semiconductor FPGA 
optimized multiplexer library elements according to the behavioral description 
in the HDL source code. This provides the flexibility to the mapper and place-
and-route tools to configure the LUT mode and connections in an optimal 
fashion.

Figure 21: 16:1 Multiplexer

VHDL

process (sel, din)
begin

if (sel = "0000") then muxout <= din(0);
elsif (sel = "0001") then muxout <= din(1);
elsif (sel = "0010") then muxout <= din(2);
elsif (sel = "0011") then muxout <= din(3);
elsif (sel = "0100") then muxout <= din(4);
elsif (sel = "0101") then muxout <= din(5);
elsif (sel = "0110") then muxout <= din(6);
elsif (sel = "0111") then muxout <= din(7);
elsif (sel = "1000") then muxout <= din(8);
elsif (sel = "1001") then muxout <= din(9);
elsif (sel = "1010") then muxout <= din(10);
elsif (sel = "1011") then muxout <= din(11);
elsif (sel = "1100") then muxout <= din(12);
elsif (sel = "1101") then muxout <= din(13);
elsif (sel = "1110") then muxout <= din(14);
elsif (sel = "1111") then muxout <= din(15);
else muxout <= '0';
end if;

end process;
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-- or doing it outside a process guarantees that your results 
are not dependant on 
-- the sensitivity list:

WITH sel SELECT
  muxout <= din(0)  when "0000",   
            din(1)  when "0001",   
            din(2)  when "0010",   
            din(3)  when "0011",   
            din(4)  when "0100",   
            din(5)  when "0101",   
            din(6)  when "0110",   
            din(7)  when "0111",   
            din(8)  when "1000",   
            din(9)  when "1001",   
            din(10) when "1010",  
            din(11) when "1011",  
            din(12) when "1100",  
            din(13) when "1101",  
            din(14) when "1110",  
            din(15) when "1111",  
            '0'     when others;

Verilog HDL

module multiplexer (                           
    input [3:0] sel,                           
    input [15:0] din,                         
    output reg muxout                          
  );                                           
                                               
always @ (sel or din)                          
  begin 
    case (sel)                                       
      4'b0000 :  muxout <= din[0];      
      4'b0001 :  muxout <= din[1]; 
      4'b0010 :  muxout <= din[2]; 
      4'b0011 :  muxout <= din[3]; 
      4'b0100 :  muxout <= din[4]; 
      4'b0101 :  muxout <= din[5]; 
      4'b0110 :  muxout <= din[6]; 
      4'b0111 :  muxout <= din[7]; 
      4'b1000 :  muxout <= din[8]; 
      4'b1001 :  muxout <= din[9]; 
      4'b1010 :  muxout <= din[10];
      4'b1011 :  muxout <= din[11];
      4'b1100 :  muxout <= din[12];
      4'b1101 :  muxout <= din[13];
      4'b1110 :  muxout <= din[14];
      4'b1111 :  muxout <= din[15];
      default :  muxout <= 1'b0;
    endcase
  end                                          

endmodule

Figure 21: 16:1 Multiplexer (Continued)
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Bidirectional Buffers
The use of bidirectional buffers instead of unidirectional (dedicated inputs or 
outputs) buffers allows for fewer device pins and, consequently, smaller 
device packages to be used, which reduces cost. In addition, the ability to 
disable outputs from toggling, when not needed, reduces power consumption.

You can instantiate bidirectional buffers in the same manner as regular I/O 
buffers or infer them from the HDL source, as shown in Figure 22. For the 
most control, disable automatic I/O insertion in your synthesis tool and then 
manually instantiate the I/O pads for specific pins, as needed.

Figure 22: HDL for Bidirectional Buffer

VHDL

library ieee;
use ieee.std_logic_1164.all;

entity bireg is port (
  datain : in std_logic_vector (7 downto 0);
  clk,en_o : in std_logic;
  Qo1 : out std_logic_vector (7 downto 0);
  Qio : inout std_logic_vector (7 downto 0));
end bireg;
architecture beh of bireg is
  signal Q_reg : std_logic_vector (7 downto 0);
  signal Qio_int : std_logic_vector (7 downto 0);
begin
  process(clk,datain) begin
    if clk'event and clk = '1' then
      Q_reg <= datain;
    end if;
  end process;
process (Q_reg,en_o) begin
  if en_o = '1' then
      Qio_int <= Q_reg ;
    else
      Qio_int <= (others=>'Z');
    end if;
  end process;
  Qio <= Qio_int;
  Qo1 <= Qio;
end;
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Cross Clock Domains
When passing data from one clock domain to another, special care must be 
taken to ensure that metastability issues do not arise as a result of set-up and 
hold timing violations. The general recommendation to address this depends 
on whether just a single signal or a data bus will be passed between clock 
domains. For single signals, bring the data into the second clock domain 
using a double register structure, as shown in Figure 23. This will keep any 
metastability from propagating into the second clock domain.

For data buses in difference clock domains, asynchronous FIFOs are 
recommended, which will allow the data to be written with one clock and read 
with another, thereby avoiding set-up and hold timing violations and any 
resulting metastability. As previously mentioned in the Distributed and Block 
Memory section, IPexpress should be used, since the FIFO will be built using 
embedded block RAM. The control logic is coded using the write enable, write 
data, full, and almost flags for the write clock domain, and the read data, read 
enable, empty, and almost empty in the read clock domain in conjunction with 
a state machine.

Verilog HDL

module bireg (datain, clk, en_o, Qo1, Qio);
  input [7:0] datain;
  input clk, en_o;
  output [7:0] Qo1;
  inout [7:0] Qio;
  reg [7:0] Q_reg;
  reg [7:0] Qio_int;
  wire [7:0] Qo1;
  wire [7:0] Qio;
  always @(posedge clk)
  begin
    Q_reg = datain;
  end
  always @(en_o or Q_reg)
  begin
    if (en_o)
      Qio_int <= Q_reg;
    else
      Qio_int <= 8'hz;
  end
  assign Qio = Qio_int;
  assign Qo1 = Qio;
endmodule

Figure 22: HDL for Bidirectional Buffer (Continued)
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HDL Coding for Distributed and Block 
Memory
Although an RTL description of RAM is portable and the coding is 
straightforward, because the structure of RAM blocks in every architecture 
are unique, synthesis tools may not generate optimized RAM 
implementations and could generate inefficient netlists.  For Lattice 
Semiconductor FPGA devices, it is generally recommended that RAM blocks 
be generated through IPexpress in Diamond.

When implementing large memories, use the embedded block RAM (EBR) 
components found in every Lattice Semiconductor FPGA device and be sure 
the use of Output Registers is enabled (default for IPexpress) for improved 
timing performance. When implementing small memories, use the resources 
in the PFU. Using Diamond IPexpress, you can target a memory module to 
the PFU-based distributed memory or to the sysMEM EBR block. 

Lattice Semiconductor FPGAs support many different memory types, 
including synchronous dual-port RAM, synchronous single-port RAM, 
synchronous FIFO, and synchronous ROM. For more information on 
supported memory types per FPGA architecture, consult the Lattice 
Semiconductor FPGA data sheets.

Resource Sharing
Resource sharing is generally the default for most synthesis tools, including 
Synopsis Synplify and Mentor Graphics Precision RTL Synthesis, because it 
usually produces efficient implementations by conserving resources when 
possible. However, it might do this at the expense of timing performance by 
creating longer routes and adding to routing congestion. If global application 

Figure 23: Using a Double Register Structure for Passing a Single Signal into another Clock 

Domain

VHDL Verilog HDL

process (clk_a)
  begin
    if rising_edge (clk_a) then
      a_reg  <= signal_a;
    end if;
  end process;

process (clk_b)
  begin
    if rising_edge (clk_b) then
      b_reg    <= a_reg;
      signal_b <= b_reg;
    end if;
  end process;

always @ (posedge clk_a)
  begin
    a_reg <= signal_a;
  end

always @ (posedge clk_b)
  begin
    b_reg    <= a_reg;
    signal_b <= b_reg;
  end
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of resource sharing is causing timing problems, turn it off globally, and then 
implement only as needed to conserve area using attributes on an individual 
basis on lower level modules/architectures. How this is done varies, so refer 
to the documentation for your synthesis tool for details. The example in 
Figure 24 is for Synplify Pro.

Finite State Machine Guidelines
A finite state machine is a hardware component that advances from the 
current state to the next state at the clock edge. This section discusses 
methods and strategies for state machine encoding.

State Encoding Methods for State 
Machines
There are several ways to encode a state machine, including sequential 
(binary), gray code, and one-hot encoding. State machines with sequentially 
encoded states have minimal numbers of flip-flops and wide combinatorial 
functions. However, most FPGAs have many flip-flops and relatively narrow 
combinatorial function generators. Sequential or gray-code encoding 
schemes can result in inefficient implementation in terms of speed and 
density for FPGAs. On the other hand, a one-hot encoded state machine 
represents each state with one flip-flop. As a result, it decreases the width of 
combinatorial logic, which matches well with register rich FPGA architectures.

In general, for FPGA Architectures, sequential or gray code encoding results 
in a smaller area implementation and one-hot encoding results in a faster 
implementation. For small state machines, less than 5 states, sequential is 
typically the default because it only requires two bits so decoding the state is 
fairly minimal. For larger state machines, 5 states or greater, one-hot is the 
default because even though each state requires a register, the states do not 
need to be decoded allowing for better performance.

There are various reasons you may choose to invoke a particular state 
machine encoding scheme for a design. For example, you may choose to use 
sequential encoding on a large state machine because performance in not 
critical and you need to use a lot of register elsewhere in your design. You can 

Figure 24: Synplify Pro Attributes to Control Resource Sharing

VHDL

VHDL architecture rtl of lower is

attribute syn_sharing : string;
attribute syn_sharing of rtl : architecture is "off";

Verilog HDL

Verilog module lower(out, in, clk_in) 
/* synthesis syn_sharing = "on" */;
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hard code the states in the source code by specifying a numerical value for 
each state. This approach ensures the correct encoding of the state machine 
but is more restrictive in the coding style. Alternatively, the enumerated coding 
style leaves the flexibility of state machine encoding to the synthesis tools. 
Most synthesis tools allow you to define encoding styles either through 
attributes in the source code or through the tool’s user interface. Each 
synthesis tool has its own synthesis attributes and syntax for choosing the 
encoding styles. Refer to your synthesis tool’s documentation for details about 
attributes syntax and values.

Here is a VHDL example of enumeration states:

type STATE_TYPE is (S0,S1,S2,S3,S4);
signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

The following is an example of Synplify VHDL synthesis attributes:

attribute syn_encoding : string;
attribute syn_encoding of <signal_name> : type is "value ";
-- The syn_encoding attribute has 4 values:
-- sequential, onehot, gray and safe.

The following is an example of Precision RTL Synthesis VHDL synthesis 
attributes:

-- Declare TYPE_ENCODING_STYLE attribute
-- Not needed if the exemplar_1164 package is used
type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM, AUTO);
attribute TYPE_ENCODING_STYLE : encoding style;
...
attribute TYPE_ENCODING_STYLE of <typename> : type is ONEHOT;

In Verilog HDL, you must provide explicit state values for states by using a bit 
pattern, such as 3'b001, or by defining a parameter and using it as the case 
item. The latter method is preferable. The following is an example using 
parameter for state values:

Parameter state1 = 2'h1, state2 = 2'h2;
...
current_state = state2; setting current state to 2'h2

The attributes in the source code override the default encoding style assigned 
during synthesis. Since Verilog HDL does not have predefined attributes for 
synthesis, attributes are usually attached to the appropriate objects in the 
source code as comments. The attributes and their values are case-sensitive 
and usually appear in lower case. The following example uses attributes in 
the Synplify Verilog HDL source code to specify state machine encoding style:

Reg[2:0] state; /* synthesis syn_encoding = "value" */;
// The syn_encoding attribute has 4 values:
// sequential, onehot, gray and safe.

In Precision RTL Synthesis, it is also recommended that you define a Verilog 
HDL parameter and use it as the case item. The setup_design_encoding 
command in Precision RTL Synthesis is used to specify the encoding style.

Typically, synthesis tools select the optimal encoding style that takes into 
account the target device architecture and size of the decode logic. You can 



Finite State Machine Guidelines

HDL Coding Guidelines 35

always apply synthesis attributes to override the default encoding style if 
necessary.

State Machine Coding Guidelines
As mentioned earlier, the preferred scheme for FPGA architectures is one-hot 
encoding. This section discusses some common issues that you may 
encounter when constructing state machines, such as initialization and state 
coverage and special case statements in Verilog HDL.

General State Machine Description
Generally, there are two approaches to describing a state machine. One 
approach is to use one process or block to handle both state transitions and 
state outputs. The other is to separate the state transition and the state 
outputs into two different processes or blocks. The latter approach is more 
straightforward, because it separates the synchronous state registers from 
the decoding logic that is used in the computation of the next state and the 
outputs. This not only makes the code easier to read and modify but makes 
the documentation more efficient. If the outputs of the state machine are 
combinatorial signals, the second approach is almost always necessary 
because it prevents the accidental registering of the state machine outputs.

The examples in Figure 25 and Figure 26 describe a simple state machine in 
VHDL and Verilog HDL. In the VHDL example, a sequential process is 
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separated from the combinatorial process. In the Verilog HDL code, two 
always blocks are used to describe the state machine in a similar way.

Figure 25: VHDL Example for State Machine

architecture lattice_fpga of dram_refresh is
type state_typ is (s0, s1, s2, s3, s4);
signal present_state, next_state : state_typ;

begin
-- process to update the present state
registers: process (clk, reset) 
begin
if (reset = '1') then

present_state <= s0;
elsif clk'event and clk='1' then

present_state <= next_state;
end if;

end process registers;

-- process to calculate the next state & outputs
transitions: process (present_state, refresh, cs)
begin
ras <= 'X'; cas <= 'X'; ready <= 'X';
case present_state is
when s0 =>

if (refresh = '1') then 
next_state <= s3;
ras <= '1'; cas <= '0'; ready <= '0';

elsif (cs = '1') then 
next_state <= s1;
ras <= '0'; cas <= '1'; ready <= '0';

else 
next_state <= s0;
ras <= '0'; cas <= '1'; ready <= '1';

end if;
when s1 =>

next_state <= s2;
ras <= '0'; cas <= '0'; ready <= '0';

when s2 =>
if (cs = '0') then 
next_state <= s0;
ras <= '1'; cas <= '1'; ready <= '1';

else 
next_state <= s2;
ras <= '0'; cas <= '0'; ready <= '0';

end if;
when s3 =>

next_state <= s4;
ras <= '1'; cas <= '0'; ready <= '0';

when s4 =>
next_state <= s0;
ras <= '0'; cas <= '0'; ready <= '0';

when others =>
next_state <= s0;
ras <= '0'; cas <= '0'; ready <= '0';

  end case;
end process transitions;
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Figure 26: Verilog HDL Example for State Machine

parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4;

reg[2:0] present_state, next_state;
reg ras, cas, ready;

// always block to update the present_state
always @(posedge clk or posedge reset)
begin

if (reset) present_state = s0;
else present_state = next_state;

end

// always block to calculate the next state & outputs
always @ (present_state or refresh or cs)
begin

next_state = s0;
ras = 1'bX; cas = 1'bX; ready = 1'bX;
case (present_state) 

s0 : if (refresh) begin
next_state = s3;
ras = 1'b1; cas = 1'b0; ready = 1'b0;

end
else if (cs) begin

next_state = s1;
ras = 1'b0; cas = 1'b1; ready = 1'b0;

end
else begin

next_state = s0;
ras = 1'b0; cas = 1'b1; ready = 1'b1;

end
s1 : begin

next_state = s2;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
s2 : if (~cs) begin

next_state = s0;
ras = 1'b1; cas = 1'b1; ready = 1'b1;

end
else begin

next_state = s2;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
s3 : begin

next_state = s4;
ras = 1'b1; cas = 1'b0; ready = 1'b0;

end
s4 : begin

next_state = s0;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
default : begin

next_state = s0;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
endcase

end



Finite State Machine Guidelines

38 HDL Coding Guidelines

Initialization and Default State for Safe State 
Machine
A state machine must be initialized to a valid state after power-up. You can 
initialize it at the device level during power-up or by including a reset 
operation to bring it to a known state. For all Lattice Semiconductor FPGA 
devices, the global set/reset (GSR) is pulsed at power-up, regardless of the 
function to employ the GSR defined in the design source code. The examples 
in Figure 27, show how asynchronous reset can be used to bring the state 
machine to a valid initialization state.

In the same manner, a state machine should have a default state to ensure 
that the state machine does not go into an invalid state. This could happen if 
not all the possible combinations are clearly defined in the design source 
code. VHDL and Verilog HDL have different syntax for default state 
declaration. In VHDL, if a case statement is used to construct a state 
machine, “when others” should be used as the last statement before the end 
of the statement. If an if-then-else statement is used, “else” should be the last 
assignment for the state machine. In Verilog HDL, use “default” as the last 



Finite State Machine Guidelines

HDL Coding Guidelines 39

assignment for a case statement, and use “else” for the if-then-else 
statement. Again, see the examples in Figure 27.

Full Case and Parallel Case Specification in Verilog 
HDL
Verilog HDL has additional attributes to define the default state without writing 
it specifically in the code. The “full_case” attribute is intended to achieve the 
same results as “default,” and the “parallel_case” attribute makes sure that all 
the statements in a case statement are mutually exclusive and informs the 
synthesis tools that only one case can be true at a time. However, both of 
these can cause a simulation mismatch after synthesis, so it is recommended 
that they not be used. Instead, it is recommended that all necessary branches 
be written for if-else and case statements.

Figure 27: Initialization and Default State Example

When Others in VHDL Default Clause in Verilog HDL

architecture lattice_fpga of FSM1 is
type state_typ is 

(deflt, idle, read, write);
signal next_state : state_typ;

begin
process (clk, rst)
begin
if (rst = '1') then

next_state <= idle; dout <= '0';
elsif (clk'event and clk = '1') then

case next_state is
when idle =>

next_state <= read;
dout <= din(0);

when read =>
next_state <= write;
dout <= din(1);

when write =>
next_state <= idle;
dout <= din(2);

when others =>
next_state <= deflt;
dout <= '0';

end case;
end if;

end process;

// Define state labels explicitly
parameter deflt = 2'bxx;
parameter idle = 2'b00;
parameter read = 2'b01;
parameter write = 2'b10;

reg[1:0] next_state;
reg dout;

always @(posedge clk or posedge rst)
if (rst) begin
next_state <= idle;
dout <= 1'b0;

end
else begin
case (next_state)
idle: begin
next_state <= read;
dout <= din[0];

end
read: begin
next_state <= write;
dout <= din[1];

end
write: begin
next_state <= idle;
dout <= din[2];

end
default: begin

next_state <= deflt;
dout <= 1'b0;

end
end
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SERDES/PCS
Use IPexpress to generate Serializer/Deserializer (SERDES) Physical Coding 
Sublayer (PCS) logic, which can be configured to support numerous industry-
standard, high-speed serial data transfer protocols such as GbE, XAUI, 
SONET/SDH, PCI Express, SRIO, CPRI, OBSAI, SD-SDI, HD-SDI and 3G-
SDI. In addition, the protocol-based logic can be fully or partially bypassed in 
a number of configurations to allow users flexibility in designing their own 
high-speed data interface.

Although there are no specific HDL coding recommendations, since 
IPexpress generates the PCS logic, the handing of the interface—both inside 
the FPGA and outside the pins at the board level—is the designer’s 
responsibility. If both areas are handled correctly, the SERDES/PCS will 
perform as specified. With regards to the interface inside the FPGA and within 
the scope of this chapter, perhaps the most important consideration is that it is 
a parallel data bus. This means the data must be registered very near the 
interface. Similar to the previous section on crossing clock domains, an 
asynchronous FIFO works well for this but the latency must be accounted for.

DSP 
For DSP designs in Lattice Semiconductor FPGAs, the use of IPexpress is 
recommended over relying on inference and the synthesis tool’s ability to 
correctly utilize sysDSP slice resources in the fabric. Another alternative is to 
directly instantiate the sysDSP slice primitives. The advantage of instantiating 
primitives is that it provides access to all ports and sets all available 
parameters available to the user. The disadvantage of this flow is that all this 
customization requires extra coding by the user. This approach is only 
recommended if IPexpress does not provide a very specific implementation 
that your design requires.

Low Power
In addition to the recommendations for achieving lower power that are 
mentioned elsewhere in this chapter, here are some other guidelines:

 Optimize for area whenever possible to reduce routing lengths. Synthesis 
tools tend to favor area over performance by default, trading off smaller 
area for performance. So it is important to understand that changing 
synthesis directives can also impact power consumption.

 Use IPexpress as much as possible for the most power-efficient (least 
area and resources) implementation. This is especially true for DSP/
Arithmetic functions to ensure that the sysDSP slices are used instead of 
regular slice logic.
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 Eliminate known glitches for power reasons, even if they are not causing 
functional problems. The addition of extra logic or registers to do this is a 
good trade-off for eliminating needless power consumption from high-
frequency switching due to glitches.

 Stagger I/O toggling and reduce the toggle rate whenever possible.

Coding to Avoid Simulation/Synthesis Mismatches
Certain coding styles can lead to pre-synthesis simulation that differs from 
post-synthesis gate-level simulations. This problem is caused by HDL models 
that contain information that cannot be passed to the synthesis tool because 
of style or pragmas that are ignored by a simulator. Many error-prone coding 
styles will be detected by running best-known-method (BKM) Check, which is 
available from the Design menu.

The examples in this section illustrate common mistakes to avoid. Where 
possible, examples of BKM messages are also provided.

Sensitivity Lists
In VHDL and Verilog HDL, combinational logic is typically modeled using a 
continuous assignment. Combinational logic can also be modeled when using 
a Verilog always statement or a VHDL process statement in which the event 
sensitivity list does not contain any edge events (posedge/negedge or ̀ event). 
The event sensitivity list does not affect the synthesized netlist. Therefore, it 
might be necessary to include all the signals read in the event sensitivity list to 
avoid mismatches between simulation and synthesized logic.
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Figure 28 shows a style that leads to a mismatch due to an incomplete 
sensitivity list. During pre-synthesis simulation, the always statement is only 
activated when an event occurs on variable a. However, the post-synthesis 
result will infer a 2-input and gate.

The synthesis-related BKM check reported is:

WARNING: (ST-6003) Always Block 'code1b.@( a)' has the
following blocking assignment with driving signals that are not
in the sensitivity list. Possible Simulation/Synthesis
mismatch.
// o = (a & b) ;

Not all variables that appear in the right-hand side of an assignment are 
required to appear in the event sensitivity list. For example, Verilog variables 
that are assigned values inside the always statement body before being used 
by other expressions do not have to appear in the sensitivity list.

Figure 28: Coding Style that Leads to a Mismatch Due to an Incomplete 

Sensitivity List

module code1b (o, a, b);
  output o;
  input a, b;
  reg o;

  always @(a)
    o = a & b;

endmodule

// Supported, but simulation mismatch may occur.
// To assure the simulation will match the synthesized logic,
// add variable b to the event list so the event list
// reads: always @(a or b).
// Alternatively, Verilog 2001 supports:
// Always @(*)
// O= a & b;
// which will avoid an incomplete sensitivity list, but it’s 
still
// recommended to write RTL to avoid an incomplete sensitivity 
list.
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Blocking/Nonblocking Assignments in 
Verilog
A subtle Verilog coding style that can lead to unexpected results is the 
blocking/nonblocking style of variable assignment. The following guidelines 
are recommended:

 Use blocking assignments in always blocks that are written to generate 
combinational logic.

 Use nonblocking assignments in always blocks that are written to 
generate sequential logic.

 Use nonblocking assignments with register models to avoid race 
conditions.

Execution of blocking assignments can be viewed as a one-step process:

 Evaluate the RHS (right-hand side equation) and update the LHS (left 
hand side expression) of the blocking assignment without interruption 
from any other Verilog statement. A blocking assignment "blocks" trailing 
assignments in the same always block, meaning that it prevents them 
from occurring until after the current assignment has been completed.

A problem with blocking assignments occurs when the RHS variable of one 
assignment in one procedural block is also the LHS variable of another 
assignment in another procedural block and both equations are scheduled to 
execute in the same simulation time step, such as on the same clock edge. If 
blocking assignments are not properly ordered, a race condition can occur. 
When blocking assignments are scheduled to execute in the same time step, 
the order execution is unknown.

According to the IEEE Verilog Standard for the language itself (not the 
synthesis standard), the two always blocks can be scheduled in any order. In 
Figure 29, if the first always block executes first after a reset, both y1 and y2 
will take on the value of 1. If the second always block executes first after a 
reset, both y1 and y2 will take on the value 0. This clearly represents a race 
condition.

Figure 29: Two Always Blocks Can Be Scheduled in Any Order

module fbosc1 (y1, y2, clk, rst);
  output y1, y2;
  input clk, rst;

  reg y1, y2;

always @(posedge clk or posedge rst)
  if (rst) y1 = 0; // reset
  else y1 = y2;
always @(posedge clk or posedge rst)
  if (rst) y2 = 1; // preset
  else y2 = y1;
endmodule
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BKM will also report potential problems, given the combination of an edge-
based sensitivity list with blocking assignments. For example:

// WARNING: (SUNBURST-0001) Always Block 'lfsrb1.@(posedge clk
or negedge pre_n)' has a edge based sensitivity list, but has
the following blocking assignments. Possible Simulation/
Synthesis mismatch.
// q3 = 1'b1 ;
// q2 = 1'b1 ;
// q1 = 1'b1 ;
// q3 = q2 ;
// q2 = n1 ;
// q1 = q3 ;

In Verilog, a variable assigned in an always statement cannot be assigned 
using both a blocking assignment (=) and a non-blocking assignment (<=) in 
the same always block.

always @ (IN1 or IN2 or SEL) begin
  OUT = IN1;
  if (SEL)
    OUT <= 2;
end
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Signal Fan-Out
Signal fan-out refers to the number of inputs that can be connected to an 
output before the current required by the inputs exceeds the current that can 
be delivered by the output while maintaining correct logic levels or 
performance requirements. FPGA logic synthesis will automatically maintain 
reasonable fan-out levels by replicating drivers or buffering a signal. Because 
of this behavior, the resulting FPGA route might be slower due to the 
additional intrinsic delays.

Signal fan-out control is available with logic synthesis to maintain reasonable 
fan-outs by controlling the degree to which drivers are replicated. You should 
anticipate the availability of FPGA routing resources that are reserved for high 
fan-out, low-skew networks like clocks, clock-enables, resets, and others. 
BKM can be configured, through Tools > Options, to detect high fan-out 
conditions, as in the following example:

WARNING: (ST-5002) Net 'sc_dist_dpram.dec_wre1' violates Max
Fanout Rule with a load of '8' pins.
sc_dist_dpram.v(71,72-71,86): Input:mem_0_0.WRE
sc_dist_dpram.v(81,72-81,86): Input:mem_0_1.WRE

http://www.sunburst-design.com/papers
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sc_dist_dpram.v(151,72-151,86): Input:mem_4_0.WRE
sc_dist_dpram.v(161,72-161,86): Input:mem_4_1.WRE
sc_dist_dpram.v(231,72-231,86): Input:mem_8_0.WRE
sc_dist_dpram.v(241,72-241,86): Input:mem_8_1.WRE
sc_dist_dpram.v(311,72-311,86): Input:mem_12_0.WRE
sc_dist_dpram.v(321,72-321,86): Input:mem_12_1.WRE

The value set for the fan-out attribute is just a reference, and not an absolute 
requirement. The software will work as much as possible to meet the value, 
but might fail in some cases. For example, when using Synplify, syn_maxfan 
and the default fanout guide are suggested guidelines only, but in certain 
cases they function as hard limits. When they are guidelines, the synthesis 
tool takes them into account, but does not always respect them absolutely. 
The synthesis tool does not respect the syn_maxfan limit if the limit imposes 
constraints that interfere with optimization. To ensure that fan-out limits are 
not overly impacting the meeting of timing constraints, be sure to apply SDC 
multi-cycle constraints where possible.

Lattice Semiconductor FPGA device architectures are designed to handle 
high signal fan-outs. When you use clock resources, there are no hindrances 
on fan-outs. However, synthesis tools tend to replicate logic to reduce fan-out 
during logic synthesis. For example, if the code implies clock enable and is 
synthesized with speed constraints, the synthesis tool might replicate the 
clock-enable logic. This type of logic replication occupies more resources in 
the devices and makes performance checking more difficult; it also results in 
additional power consumption. Control the logic replication in the synthesis 
process by using attributes for a high-fan-out limit.

If logic replication is causing problems, try turning it off globally by setting the 
fan-out limit very high. Higher fan-out limit means less replicated logic and 
fewer buffers inserted during synthesis, and a consequently smaller area. 
Then manually replicate logic only where needed to make timing. 
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