Lecture 16
Physical Design, Part 2

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/
Placement

• Place logic cells within the flexible blocks

• Ideal objectives
 - guarantee the router can complete the routing step
 - minimize all the critical net delays
 - make the chip as dense as possible
 - minimize power, crosstalk between signals

• Realistic objectives
 - minimize total estimated interconnect length
 - meet the timing requirement for critical nets
 - minimize the interconnect congestion
Placement Terms

- Over the cell routing (OTC)
- Channel capacity
- Feedthroughs (feedthrus)
- Jumper (unused vertical track in a cell)
Placement Terms

- Manhattan distance vs Euclidean distance
- Minimum Rectilinear Steiner Tree (MRST)
Placement Algorithms

- **Constructive placement method**
 - **Min-cut algorithm**
 - cut the placement area into two pieces
 - swap logic cells to minimize cut cost
 - repeat and cut smaller pieces till all cells placed
Placement Algorithms

- **Constructive placement method**
 - Eigenvalue placement algorithm
 - cost matrix or weighted connectivity matrix
 - quadratic optimization problem
- **Iterative placement method**
 - take existing placement and improve it
 - pairwise interchange algorithm
 - force-directed algorithm
Physical Design Flow

- Design entry
 - logic description with no physical information
- Logic synthesis
- Initial floorplan
- Synthesis with load constraints
- Timing-driven placement
- Synthesis with in-place optimization
- Detailed placement
- Global routing
- Detailed routing
Global Routing

• Two types of areas to global route
 - inside the flexible blocks
 - between blocks

• Objectives
 - start from a floorplan and placement
 - minimize the total interconnect length
 - maximize the probability that the detailed router can complete the routing
 - minimize the critical path delay
Measurement of Interconnect Delay

- Elmore delay model
 - after placement, the logic cell position fixed
Global Routing Between Blocks

- Numbering channels
- Channels form the edge of a graph
- Each channel has a capacity
Global Routing Between Blocks

- Find terminals of nets
- Find minimum-length tree
- Minimum-length tree \neq Minimized delay between terminals (A1 to D1)
Detailed Routing

• Goal
 - complete all connections between logic cells

• Objectives
 - minimize total interconnect length and area
 - minimize # of layer changes (vias)
 - minimize delay of critical paths
Detailed Routing

- Routing pitch rules
 - via-to-via (VTV) pitch
 - via-to-line (VTL) pitch
 - line-to-line (LTL) pitch

- Waffle via
- Stacked via
Router’s View of the Cell

- **Phantom**

1. electrically equivalent connectors; router can connect to top or bottom and use connectors as a feedthrough
2. equivalent connectors; router can connect to top or bottom but cannot use as a feedthrough
3. must-join connectors, router *must* connect to top *and* bottom
4. internal connector
5. track location blocked by m_2 inside cell
6. off-grid connector
7. connector with no equivalent
8. feedthrough between equivalent connectors with internal jog
9. routing grid
10. cell abutment box
Terms in Detailed Routing

- **Trunks**
 - running in parallel to the channel

- **Branches**
 - connecting trunk to terminals

- **Tracks**
 - horizontal track spacing

- **Terminal**
 - column spacing
Terms in Detailed Routing

(a) 4 horizontal tracks

horizontal track pitch = 8 \(\lambda \)

expanded view of channel

4 \(\lambda \)

(b) cell abutment box

4 \(\lambda \)

(c) vertical track pitch = 8 \(\lambda \)

vacant terminal

unused terminal

logic cell

m1

m2

branch

trunk or segment

dotted line

pseudo-terminal

net exiting channel

via1

connector, terminal, port, or pin

via1 = m1 + m2 + contact

1 2 0 1 4 0 0 6 0 6 0 8 9 0 9
Channel Density

- Global density
- Local density
Detailed Routing

- Manhattan routing
 - preferred direction
 - preferred metal layer
 - logic cell connectors on 1 metal only
2-Layer Routing

• Left-edge algorithm
 - 1. sort the nets from the leftmost edge
 - 2. assign first net to the first free track
 - 3. assign next net that can fit to the track
 - 4. repeat step 3 until no more net can fit
 - 5. repeat step 2-4 until all nets assigned
Left-Edge Algorithm Example

Segments sorted by their left edge.

(a) Left edge of segment 7 connects to top of channel.

Net 6 has 3 terminals.

(b) Segments assigned to tracks by their left edges.

(c)
Multi-Layer Routing

• Polysilicon + 2-level metal
 - 2.5-layer routing
 - poly only for short connections

• 3-layer routing
 - M1 horizontal, M2 vertical, M3 horizontal (HVH)
 - M1 vertical, M2 horizontal, M3 vertical (VHV)
 - M3 pitch is multiples of M1
3-Layer Routing Example
Final Routing Steps

• Timing-driven detailed routing
 - reduce # of vias
 - alter interconnect width
 - minimize overlap capacitance

• Unroutes
 - leave problematic nets unconnected
 - complete interconnects with violation

• To resolve
 - discover the reason and revisit synthesis and floorplan
 - return to global router, change bin size
 - engineering change orders (ECO)
 - via removal and routing compaction
Special Routing

- **Clock Routing**
 - minimize clock skew
 - clock tree synthesis
 - clock-buffer insertion

- **Activity-induced skew**
 - supply noise
Special Routing

- Power Routing
 - electromigration
 - size the power buses according to the current

<table>
<thead>
<tr>
<th>Layer/contact/via</th>
<th>Current limit</th>
<th>Metal thickness</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>1 mA m m⁻¹</td>
<td>7000 Å</td>
<td>95 m W /square</td>
</tr>
<tr>
<td>m2</td>
<td>1 mA m m⁻¹</td>
<td>7000 Å</td>
<td>95 m W /square</td>
</tr>
<tr>
<td>m3</td>
<td>2 mA m m⁻¹</td>
<td>12,000 Å</td>
<td>48 m W /square</td>
</tr>
</tbody>
</table>

- tap-cell
- end-cap cell
- de-cap cell
Notes

- Encounter tutorial to be discuss next lecture
- Detailed class project description
 - to be release by Friday
 - behavioral code to be submitted
 - account for 30% of the project
 - by 11/22 before thanksgiving
 - if late, by 11/28, discount by 40%
Questions?

Comments?

Discussion?